• Title/Summary/Keyword: chemical resistance test

Search Result 582, Processing Time 0.035 seconds

Selection of a carrying agent for obtaining radioactive methyliodide vapors under dynamic conditions

  • Obruchikov, Alexander V.;Merkushkin, Aleksei O.;Magomedbekov, Eldar P.;Anurova, Olga M.;Vanina, Elena A.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2761-2766
    • /
    • 2021
  • A method for preparing "reagent" for radioactive methyliodide vapors production using an isotopic exchange reaction has been developed. Based on the obtained data of the isotopic exchange efficiency and hydraulic resistance, white fused alumina (700-840 ㎛) was selected as the carrying agent material for "reagent" production. The radioiodine isotopic exchange dependences on such parameters as temperature, gas flow velocity, and the methyliodide concentration in it were determined. Optimal conditions have been selected to achieve 85% of the isotopic exchange rate in 1 h of the experiment. The obtained data allowed to develop an approach to the test of iodine filters for nuclear power plants and to determine their efficiency.

Physical Properties of Insulating Composite Materials Using Natural Cellulose and Porous Ceramic Balls as a Core Materials (천연섬유질과 다공성 세라믹볼을 심재로 사용한 복합단열재의 물성)

  • Hwang, Eui-Hwan;Cho, Soung-Jun;Kim, Jin-Man
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.501-507
    • /
    • 2011
  • To develop environmental-friendly insulating composite materials, natural cellulose and porous ceramic balls were used as core materials and activated Hwangtoh was used as a binder. Various specimens were prepared with different water/binder ratios and core material/binder ratios. The physical properties of these specimens were then investigated through compressive strengths, flexural strengths, absorption test, hot water resistance test, pore analysis, thermal conductivity, and observation of micro-structures using scanning electron microscope. Results showed that the maximum compressive strength varied appreciably with the water/binder ratios and core material/binder ratios, but the flexural strength increased with the core material/binder ratios regardless of water/binder ratios. The compressive strength and the flexural strength measured after the hot water resistance test decreased remarkably compared to those measured before test. The pore analysis measured after the hot water resistance test showed that total pore volume, porosity and average pore diameter decreased, while bulk density increased by the acceleration of hydration reaction of binder in the hot water. The thermal conductivity decreased gradually with an increase of core material/binder ratios. It can be evaluated that the composite insulation materials having good insulating properties and mechanical strengths can be used in the field.

Effect of CrN barrier on fuel-clad chemical interaction

  • Kim, Dongkyu;Lee, Kangsoo;Yoon, Young Soo
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.724-730
    • /
    • 2018
  • Chromium and chromium nitride were selected as potential barriers to prevent fuel-clad chemical interaction (FCCI) between the cladding and the fuel material. In this study, ferritic/martensitic HT-9 steel and misch metal were used to simulate the reaction between the cladding and fuel fission product, respectively. Radio frequency magnetron sputtering was used to deposit Cr and CrN films onto the cladding, and the gas flow rates of argon and nitrogen were fixed at certain values for each sample to control the deposition rate and the crystal structure of the films. The samples were heated for 24 h at 933 K through the diffusion couple test, and considerable amount of interdiffusion (max. thickness: $550{\mu}m$) occurred at the interface between HT-9 and misch metal when the argon and nitrogen were used individually. The elemental contents of misch metal were detected at the HT-9 through energy dispersive X-ray spectroscopy due to the interdiffusion. However, the specimens that were sputtered by mixed gases (Ar and $N_2$) exhibited excellent resistance to FCCI. The thickness of these CrN films were only $4{\mu}m$, but these films effectively prevented the FCCI due to their high adhesion strength (frictional force ${\geq}1,200{\mu}m$) and dense columnar microstructures.

The Evaluations of Thermal Stability and Stress Crack Resistance of Geomembranes with Surface Defects in the Landfill (폐기물매립지에서 표면결함이 있는 지오멤브레인의 열적 안정성 및 응력균열저항성 평가)

  • 전한용;이광열;이재영
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.1
    • /
    • pp.53-62
    • /
    • 2001
  • Effects of surface defect on thermal stability and stress crack resistance of high density polyethylene geomembranes in environmental conditions were examined by comparing the mechanical properties, chemical resistance and failure times of geomembranes between defective cases under different temperatures. Artificial surface defects were added to the surface of geomembranes by scratch apparatus designed specially. The number of surface defects was increased with the smaller size of scratch induced particles, and the more scratch addition numbers at the shear rate of scratch induced mechanism, 100mm/min. The tensile strength were decreased but the tensile strain was increased with the above conditions. In chemical resistance of defective geomembranes, the tensile strength were decreased but the tensile strain was increased with the longer immersion period and the higher temperature under the same scratch induced conditions. Finally, failure times of defective geomembranes by ESCR test were shifted to the shorter time ranges by increasing temperatures.

  • PDF

Influences of Casting Conditions and Constituent Materials on the Production of Duo-castings (이중복합 주조체의 제조에 미치는 구성 재질과 주조 조건의 영향)

  • Jung, Jae-Young
    • Journal of Korea Foundry Society
    • /
    • v.38 no.1
    • /
    • pp.16-26
    • /
    • 2018
  • In this study, the effects of the pouring temperature, preheating temperature, surface condition and fraction of the wear resistant part on the production of duo-castings were investigated using a high Cr white cast iron with excellent abrasion resistance and a low Cr alloy steel with good toughness. The constituent materials of the duo-castings were designed to have high hardness, fracture toughness and abrasive wear resistance for the replacement of high Mn alloy steels with low abrasive wear resistance. In particular, the amount of abrasive wear of 17% Cr white cast iron was about 1/20 of that of high Mn alloy steel. There was an intermediate area of about 3mm due to local melting at the bonding interface of the duo-castings. These intermediate regions were different from those of the constituent materials in chemical composition and microstructure. This region led to fracture within the wear resistant part rather than at the bonding interface in the bending strength test. The bending fracture strengths were 516-824 MPa, which were equivalent to the bending proof strength of high Mn steel. The effects of various casting conditions on the duo-cast behavior were studied by simple pouring of low Cr alloy steel melt, but the results proved practically impossible to manufacture duo-castings with a sound bonding interface. However, the external heating method was suitable for the production of duo-castings with a sound bonding interface.

Breeding of Burley Tobacco KB 110 Resistant to PVY and Black Shank and its Agromomic Characteristics (감자바이러스 Y 및 역병 저항성 연초 버어리종 신품종 KB 110의 육성 및 농경적 특성)

  • 정석훈;최상주;조천준;조명조
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.19 no.2
    • /
    • pp.83-91
    • /
    • 1997
  • The vein-necrosis strain or potato virus Y (PVY-Vff) and black shank (Phytophlhora parasitica roar. nicotianae) causes severe damage on burley tobacco(Wicotiana tabacum L.) in Korea, A new burley tobacco resistance to PVY and black shank, KB 110, was developed by Korea Ginseng and Tobacco Research Institute. It was developed from the cross of Burley 21 with TC 591 in 1990, and was backrossed to Burley 21 in the following season. TC 591 has resistance to PVY and moderate resistance to race 0 of black shank, but it is susceptible to tobacco mosaic vim (TMV). KB 110 was evaluated for its resistance to PVY, TMV and black shank in the greenhouse and at fields for preliminary and performance trials. KB 110 which has secreting glandular trichomes was resistant to PVY-VN, TW and black shank. It had an erect growth habit and two more leaves per plant than that of Burley 21, and matures two to three days later. It yielded approximately 3 percent more cured leaf than the standard cultivar Burley 21, but other plant characteristics were very similar to those of Burley 21. It had acceptable standards for chemical and physical characteristics of lured leaf on regional farm test in 1995-1997. KB 110 produced average yields of good quality tobaccos and was appeared to be resistant to PVY inwhere occurrence of the virus are severe chronic at burley growing area.

  • PDF

The Effect of Heat Treatment on the Corrosion-Resistance for Ti-6Al-4V Alloy (Ti-6Al-4V합금의 열처리가 내식성에 미치는 영향)

  • 백신영;나은영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.453-459
    • /
    • 2003
  • In this study, the effect of heat treatment to the electrochemical polarization resistance for the Ti-6Al-4V alloy was measured. The solution heat treatments were carried out at $1066^{circ}E, 966^{\circ}$E$, followed by aging heat treated $550^{circ}E, 600^{circ}E, and 650^{circ}E$. The electrochemical polarization resistance behavior was measured by potentio-dynamic polarization in the 1N $HNO_3$ + 15ppm HF solution. The obtained results were as follows. 1. As solution heat temperature increased. the corrosion potential was increased, whereas passive current density and critical current density were decreased. 2. As aging heat temperature increased, the corrosion potential was almost constant, but passive current density was decreased 3. The results of composition test measured by EDS at grain boundary and near $\gamma'$ precipitates indicated that S, Cl. and Si which originated from base metal were segregated at the grain boundaries Al and Ti which were the main alloying element in $\gamma'$ were depleted at the $\gamma'$ precipitated. The depletion of Al and Ti in $\gamma'$ was caused to early breakdown of passive film.

Laser Surface Treatment of Magnesium Alloy using ZrO2 for Corrosion Resistance (내식성 향상을 위한 마그네슘합금의 ZrO2 적용 레이저 표면 처리)

  • Yoon, Sangwoo;Kang, Dongchan;Kim, Joohan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.4
    • /
    • pp.93-100
    • /
    • 2016
  • The laser surface treatment of magnesium alloy was studied. $ZrO_2$ was used as sintering ceramics, and its corrosion resistance was verified. Appropriate laser parameters were proposed for homogeneous solidification of the sintered layer. The chemical compositions of the sintered layer were analyzed with laser-induced breakdown spectroscopy. $Na_2SO_4$ was used for a corrosion test, and the resistance of the sintered sample was confirmed. The microstructures of the sintered parts were also examined. The solidified grains on the top sintered surface were observed; however, reasonable fusion was obtained at the interface between the baseline and the ceramics. Laser surface treatment using $ZrO_2$ on magnesium alloy showed an improvement in corrosion resistance.

A Processing and Flexural Performance Evaluation of Hybrid Organic Fiber Reinforced Concrete (하이브리드 유기섬유 보강 콘크리트의 제조 및 휨성능 평가)

  • Jeon, Chanki;Jeon, Joongkyu;Shim, Jaeyeong
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.2
    • /
    • pp.213-220
    • /
    • 2017
  • Organic fiber reinforced concrete is applicable to many applications for construction material. In general, organic fibers have low tensile strength and elastic modulus, but they have many advantages such as high crack resistance, impact resistance, chemical resistance, flexural behavior and corrosion resistance. In this study, hybrid organic fibers were prepared by mixing polyamide (PA) fibers and high strength polyester (PET) fibers. Then, flexural performance test of fiber reinforced concrete containing hybrid organic fiber was performed. The energy absorption capacity of the hybrid organic fiber reinforced concrete was evaluated.

Evaluation on Strength Characteristics of Automobile Steel Sheet by Electrode Resistance Spot Weld (전기저항 점용접한 자동차 강판의 강도특성평가)

  • Yoon, Han-Ki;Hu, Kwan-Do;Ryu, Deok-Seang
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.115-119
    • /
    • 2013
  • The resistance spot welding of high strength steel degrades the weldability because of its high strength with rich chemical composition and coating layer to protect from corrosion. And the weld Expulsion is prone to occur and severely affect the nugget guality when the initial gap between automatic borrowing galvanied steel sheets(SGARC35) and Zn-coateel trip steels(GA580TRIP and GA980 TRIP) exist in resistance spot welding(RSW). RSW is one of the most popular welding processes used to join sheet metals. but weld guality sometimes do creases due to welding condition. in this paper to verity tue weldability using spot welding with the hemispherically concaved electrode, tensile shear strength and cross-tensile strength were measured by a universal test machine. in addition, the nugget size on cross-sectional area of the weld was observed by optical and electron microscopy. As a result, the nugget size of this specimen is increased with increasing welding current and Max load of tensile-shear strength is increased with welding current is increasing.