• Title/Summary/Keyword: chemical resistance test

Search Result 582, Processing Time 0.03 seconds

Investigation on Electrochemical Characteristics of Metallic Bipolar Plates with Chloride Concentrations for PEMFC (고분자 전해질 연료전지 금속 분리판용 금속의 염화물 농도에 따른 전기화학적 특성 연구)

  • Shin, Dong-Ho;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.347-360
    • /
    • 2021
  • Currently, the demand for eco-friendly energy sources is high, which has prompted research on polymer electrolyte membrane fuel cells. Both aluminum alloys and nickel alloys, which are commonly considered as materials of bipolar plates in fuel cells, oxide layers formed on the metal surface have excellent corrosion resistance. In this research, the electrochemical characteristics of 6061-T6 aluminum alloy and Inconel 600 were investigated with chloride concentrations in an acid environment that simulated the cathode condition of the PEMFC. After potentiodynamic polarization experiments, Tafel analysis and surface analysis were performed. Inconel 600 presented remarkably good corrosion resistance under all test conditions. The corrosion current density of 6061-T6 aluminum alloy was significantly higher than that of Inconel 600 under all test conditions. Also, 6061-T6 aluminum alloy and Inconel 600 presented uniform corrosion and intergranular corrosion, respectively. The Ni, Cr, and Fe, which are the main chemical compositions of Inconel 600, are higher than Al in the electromotive force series. And a double oxide film of NiO-Cr2O3, which is more stable than Al2O3, is formed. Thus, the corrosion resistance of Inconel 600 is better.

Surface Characteristic of Graphene Coated Stainless Steel for PEMFC Bipolar Plate (그래핀이 코팅된 스테인리스강의 고분자전해질 연료전지 분리판 적용을 위한 표면 특성)

  • Lee, Su-Hyung;Kim, Jung-Soo;Kang, Nam-Hyun;Jo, Hyung-Ho;Nam, Dae-Guen
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.5
    • /
    • pp.226-231
    • /
    • 2011
  • Graphene was coated on STS 316L by electro spray coating method to improve its properties of corrosion resistance and contact resistance. Exfoliated graphite (graphene) was made of the graphite by chemical treatment. Graphene is distributed using dispersing agent, and STS 316L was coated with diffuse graphene solution by electro spray coating method. The structure of the exfoliated graphite was analyzed using XRD and the coating layer of surface was analyzed by using SEM. Analysis showed that multi-layered graphite structure was destroyed and it was transformed into fine layers graphene structure. And the result of SEM analysis on the surface and the cross section, graphene layer was uniformly formed with 3~5 ${\mu}m$ thickness on the surface of substrate. Corrosion resistance test was applied in the corrosive solution which is similar to the PEM fuel cell stack inside. And interfacial contact resistance test was measured to simulate the internal operating conditions of PEM fuel cell stack. The results of measurements show that stainless steel coated with graphene was improved in corrosion resistance and surface contact resistance than stainless steel without graphene coating layer.

Corrosion Resistance of Galvanized Steel by Treating Modified Si Organic/Inorganic Hybrid Coating Solution (Si 변성 유/무기 하이브리드 코팅액에 의한 아연도금강판의 내식특성)

  • Seo, Hyun-Soo;Moon, Hee-Joon;Kim, Jung-Ryang;Kim, Jong-Soon;Ahn, Seok-Hwan;Moon, Chang-Kwon;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.32-38
    • /
    • 2011
  • Galvanized steel has gone through a chemical process to keep it from corroding. The steel gets coated in layers of zinc because rust will not attack this protective metal. For countless outdoor, marine, or industrial applications, galvanized steel is an essential fabrication component. The reduction of the corrosion rate of zinc is an important topic. In the past, a very popular way to reduce the corrosion rate of zinc was to use chemical conversion layers based on $Cr^{+6}$. However, a significant problem that has arisen is that the use of chromium salts is now restricted because of environmental protection legislation. Therefore, it is very important to develop new zinc surface treatments that are environmentally friendly to improve the corrosion resistance of zinc and adhesion with a final organic protective layer. In this study, a Urethane solution (only Urethane 20 wt.%; S-700) and an organic/inorganic solution with Si (Si polysilicate 10 wt.% + Urethane 10 wt.%; LRO-317) are used. Based on the salt spray test of 72 h, S-700 and LRO-317 had a superior effect for the corrosion resistance on EGI and HDGI, respectively.

Strength and Durability Properties of Concretes Using Ground Granulated Blast-Furnace Slag According to Steam Curing Types (고로(高爐)슬래그 미분말(微分末)을 사용한 콘크리트의 증기양생(蒸氣養生)에 따른 강도(强度) 및 내구특성(耐久特性))

  • Hong, Chang-Woo;Jang, Ho-Sung;Jeong, Won-Kyong
    • Resources Recycling
    • /
    • v.15 no.4 s.72
    • /
    • pp.52-59
    • /
    • 2006
  • The purpose of this study was to evaluate the effects of ground granulated blast-furnace slag on strength development and durability of ordinary portland cement concrete (OPC) with steam curing types. Main experimental variables were slag contents(0%, 10%, 30%, 50%, 70%) and curing types (standard, accelerated curing). It were performed to check the basic properties of concretes that compressive strength, rapid chloride ion permeability and chemical resistance. From the result, we have found that increasing the amount of blast-furnace slag produced concrete with increased compressive strength and permeability resistance. Rapid freezing-thawing test showed that they were good enough to protect the concrete structures and to carry out cyclic freezing and thawing. The freeze-thaw resistance of blast-furnace slag produced concretes maintained above 90% of relative dynamic modulus after 300 freezing-thawing cycles. Increasing the amount of blast-furnace slag produced concretes with increased chemical resistance.

Decay Resistance and Anti-mold Efficacy of Wood Treated with Fire Retardants (난연처리 목재의 방미 및 방부성능)

  • Son, Dong Won;Kang, Mee Ran;Lee, Dong-Heub;Park, Sang-Bum
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.559-565
    • /
    • 2013
  • This study evaluated the ability of white and brown rot fungi to decompose fire retardant-treated wood by measuring mass loss. Anti efficacy of FRT against sapstain and mold fungi was evaluated. Wood was treated with liquid sodium silicate and boric acid, ammonium borate, di-ammonium phosphate. Retardant treated wood was then subjected to fungal decay resistance tests performed according to KS standard method using a brown-rot fungus, Fomitopsis palustris and white rot fungus Trametes versicolor. Aspergillus niger, Penicillium funiculosum, Rhizopus nigricans, Aureobasidium pullulans, Tricoderma virede fungi were used anti-sapstain and mold test. Boron and phosphorus chemicals used in this study increased the resistance of fire retardant treated wood against both fungal attack. Anti mold and sapstain efficacy of the fire retardant treated wood was excellent but there were difference depend on mold. After the liquid sodium silicate treatment, the second chemical treatment process could lead chemical fixation into wood, which effects decay resistance.

Chemical Attack Resistance Characteristics of Cement Mortars U sing in Crushed Sand (부순모래를 사용한 시멘트 모르타르의 화학적 침해 저항 특성)

  • Kim Kang Min;Baek Dong Il;Kim Myung Sik;Jang Hui Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.519-522
    • /
    • 2005
  • As this study is to test effects of chemical attack on deterioration of cement mortars using in crushed sand. Besides tests have been carried out with cement mortars by river sand and crushed sand by fine sand, cement mortars mix various proportions of slica fume and fly ash(up to $15\%$ and $50\%$ by weight for cement) were prepared and immersed in pure water, sodium sulfate solution, magnesium sulfate solution, seawater for 28days. Test on the change in the weight and compressive strength of cement mortars according to the duration of immersion time and the content of slica fume and fly ash was performed.

  • PDF

Evaluation of Cooling Water Corrosion Inhibitors by the Electrical Resistance Method (전기저항법에 의한 공업용수 부식억제제의 성능시험)

  • W. K. Min
    • Journal of the Korean Chemical Society
    • /
    • v.7 no.4
    • /
    • pp.251-253
    • /
    • 1963
  • Six corrosion inhibitors for cooling water use were evaluated by means of a corrosometer in a laboratory bench scale test. A steel probe (Alloy 1020) was exposed and checked for the extent of corrosion in a recirculating water system, changing inhibitors and their concentrations at $40^{\circ}C$. A 95% inhibition was provided at the following concentrations of inhibitors. 50 ppm sodium hexametaphosphate 50 ppm commercial inhibitor A 50 ppm commercial inhibitor B 100 ppm disodium phosphate 200 ppm sodium chromate Sodium silicate was found to be use-less in this test. It was also observed that some inhibitors worked less effectively on the acid-cleaned steel probe.

  • PDF

A Study on Characteristics of Coated Films on Wood Surface by Nitrocellulose Lacquer, Aminoalkyd, Polyester, and Polyurethan (니트로셀룰로오스락카, 아미노알키드, 폴리에스테르 및 폴리우레탄 도료(塗料)의 도막성능(塗膜性能)에 관(關)한 고찰(考察))

  • Lee, Phil-Woo;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.12-21
    • /
    • 1989
  • This experiment was executed to investigate the characteristics of gloss and color difference in coated films by N.C. Lacquer, Aminoalkyd, Polyester. and Polyurethan coating after chemical (distilled water, ethyl alcohol. acetic acid, and sodium hydroxide) and heating ($120^{\circ}C$) treatments, cold-check test, and U.V. radiation. The results obtained were summarized as follows 1. The gloss decreasing rate by water resistance test was the least among chemicals treated on coated films. 2. The color difference of coated films chemical treatments highly and similarly increased, except the alkali treatment showing a little increase. 3. In the color difference by U.V. radiation, the polyester coated film showed generally large difference compared with the other coated films.

  • PDF

Reducing the Test Time for Chemical Durability of PEMFC Polymer Membrane (PEMFC 고분자막의 화학적 내구성 평가시간 단축)

  • Oh, Sohyeong;Cho, Wonjin;Lim, Daehyeon;Yoo, Donggeun;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.333-338
    • /
    • 2021
  • The durability of the PEMFC stack for large commercial vehicles should be more than 5 times that for passenger vehicles. If the Chemical Accelerated Stress Test (AST) of PEMFC(Proton Exchange Membrane Fuel Cells) membrane for passenger cars is applied as it is for large commercial vehicles, there is a problem that the AST time becomes more than 2,500 hours. In order to shorten the AST time of DOE (Department of Energy), the chemical durability of the polymer membrane was evaluated using oxygen instead of air as a cathode gas. In this study, Nafion XL was used as a polymer membrane to evaluate accelerated durability under OCV, 90?, RH 30%, H2/(air or oxygen) conditions. Among the DOE membrane durability target criteria, the decrease rate of short resistance was the fastest. By using oxygen instead of air, the degradation rate of the polymer membrane was accelerated while being less affected by electrode deterioration, reducing the polymer membrane durability evaluation time to less than half.

Analysis of Long-Term Performance of Geogrids by Considering Interaction among Reduction Factors (감소계수 상호영향을 고려한 지오그리드의 장기성능 해석)

  • Jeon, Han-Yong;Kim, Yuan-Chun;Jang, Yeon-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.7
    • /
    • pp.55-65
    • /
    • 2012
  • Total reduction factor that is used when calculating allowable tensile strength of geogrids is made by multiplying the installation damage reduction factor ($RF_{ID}$), chemical degradation reduction factor ($RF_D$), and creep reduction factor ($RF_{CR}$) etc. In case of a model estimating allowable tensile strength considering reduction factor over the short-term tensile strength of geogrids, it has a limit of not considering interaction force between reduction factors. Junction strength comes to be reduced by installation damages or chemical degradation in the same way as tensile strength. Single junction test method cannot properly test damaged samples and shows large deviations as it does not consider scale effect. Besides, regarding calculating shear strength, no reasonable study on reduction factors was conducted yet. Therefore, in this study, reduction factors that may affect the long-term performance of geogrids were revaluated considering various conditions and accurate long-term allowable tensile strength was calculated considering interrelation between reduction factors. Creep results after installation damage and chemical resistance test showed lower value than calculated value according to GRI GG-4. After the installation damage test and the chemical resistance test, the reduction factor of junction strength was less than that of tensile strength. Shear strength before and after installation damage showed no change or increase.