• Title/Summary/Keyword: chemical regime

Search Result 160, Processing Time 0.019 seconds

Study on the Ethanol Recovery Process using Dircet Contact Heat Exchange (고온의 기포접촉에 의한 에탄올 회수공정에 관한 연구)

  • Lee, Won-Young;Yeo, Sang-Do;Choi, Yong-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.176-180
    • /
    • 1995
  • Direct contact heat exchange (DCHE) method has been employed to investigate the separation of ethanol from dilute aqueous solutions. Bubbles at high temperature were dispersed into a continuous liquid phase, generating temperature gradient in air-liquid interface, which causes heat and mass transfer accordingly. The experiments were performed in the ranges of jet regime air flow. The air-water stripping coefficient increased $5{\sim}10,\;and\;1{\sim}1.5$ times as temperature and air flow rate increased, respectively. The recovery ratio based on the initial ethanol concentration reached into 80% at the air flow rate of 84.88 m/min. The initial ethanol concentration showed little effect on the stripping coefficient and the recovery ratio.

  • PDF

Holocene paleoenvironmental changes in the Lake Khuvsgul, Northern Mongolia (몽골 북부 흡수굴호의 홀로세 동안의 고환경 변화)

  • Orkhonselenge, A.;Kashiwaya, K.;Ochiai, S.;Krivonogov, S.K.;Nakamura, T.
    • The Korean Journal of Quaternary Research
    • /
    • v.22 no.1
    • /
    • pp.28-36
    • /
    • 2008
  • The present study has focused on the environmental changes and evidences for sedimentation in the Lake Khuvsgul catchment during the Holocene period, inferred from short core sediment (BO03) from the eastern shore of Borsog Bay, which were analyzed in order to review records of the Holocene climatic evolution and Holocene history in Northern Mongolia. For the purpose of reconstruction of natural phenomenon that occurred in the lake catchment system during the Holocene, physical and chemical properties including HCl-soluble material, biogenic silica, organic matter and grain size distribution of minerals in the core sediments have been analyzed in this study. The vertical variations in composition for these properties show distinctly that five lines of paleoenvironmental evidence occurred in the lake catchment during the Holocene. A modified age model resulting from AMS carbon dating for the BO03 core sediment shows timings of these environmental events at 9.5 Kyr BP, 8.0 Kyr BP, 5.6 Kyr BP and 3.2 Kyr BP, respectively. Paleoenvironmental changes in the Lake Khuvsgul catchment system during the Holocene highlight distinctive features of the hydrological regime and geomorphologic evolution in the lake catchment due to regional landscape and global climatic changes corresponding with the Holocene optimum and thermal optimum. In particular, the change of hydrologic regime based on the sedimentological evidence has been caused by not only overland flow due to melting water, but also base flow due to thick permafrost around Khuvsgul region.

  • PDF

UF pretreatment at elevated temperature within the scheme of hybrid desalination: Performance and environmental impact

  • Agashichev, Sergey;Kumar, Jayesh
    • Membrane and Water Treatment
    • /
    • v.8 no.3
    • /
    • pp.279-292
    • /
    • 2017
  • This study was aimed at ultrafiltration (UF) as a pretreatment before reverse osmosis (RO) within the scheme of hybrid reverse osmosis-multistage flush (RO-MSF) desalination. Seawater at elevated temperature (after MSF heat-exchangers) was used as a feed in this process. The pretreatment system was represented as a set of functionally-linked technological segments such as: UF filtration, backwashing, chemical- enhanced backwashing, cleaning, waste disposal, etc. The process represents the sequences of operating cycles. The cycle, in turn, consists of the following unit operations: filtration, backwashing and chemical-enhanced backwashing (CEB). Quantitative assessment was based on the following indicators: normalized permeability, transmembrane pressure, specific energy and water consumption, specific waste generation. UF pre-treatment is accompanied by the following waste streams: $W1=1.19{\times}10$ power of $-2m^3$ (disposed NaOCl with 0.0044% wt.)/$m^3$ (filtrate); $W2=5.95{\times}10$ power of $-3m^3$ (disposed $H_2SO_4$ with 0.052% wt.)/$m^3$(filtrate); $W3=7.26{\times}10$ power of $-2m^3$ (disposed sea water)/$m^3$ (filtrate). Specific energy consumption is $1.11{\times}10$ power of $-1kWh/m^3$ (filtrate). The indicators evaluated over the cycles with conventional (non-chemical) backwashing were compared with the cycles accompanied by CEB. A positive impact of CEB on performance indicators was demonstrated namely: normalized UF resistance remains unchanged within the regime accompanied by CEB, whereas the lack of CEB results in 30% of its growth. Those quantitative indicators can be incorporated into the target function for solving different optimization problems. They can be used in the software for optimisation of operating regimes or in the synthesis of optimal flow- diagram. The cycle characteristics, process parameters and water quality data are attached.

A time dependent thermal and solutal convection problem in physical vapor transport of Hg2Cl2-I2 system

  • Kim, Geug Tae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.2
    • /
    • pp.80-88
    • /
    • 2017
  • In this research a time dependent thermal and solutal convection was computationally investigated for the physical vapor transport of the mixture of $Hg_2Cl_2-I_2$ system with for the convective regime from thermal Rayleigh number of $2.16{\times}10^6$ up to $1.7{\times}10^7$ with marching time to a steady state problem. With time marching, the convective cells are decreased for the thermal Rayleigh number of $2.16{\times}10^6$, and increased for the thermal Rayleigh number of $1.7{\times}10^7$. The convective flow structures are found to be essentially time independent on the horizontal orientation of the enclosure with respect to the gravity vector, and on the other hand, time dependent on the vertical orientation of the enclosure with respect to the gravity vector.

Effect of Pressure on Acoustic Pressure Response and NO Formation in Diluted Hydrogen-Air Diffusion Flames (희석된 수소-공기 확산 화염에서 음향파 응답과 NO 생성에 미치는 압력의 영향)

  • Sohn, Chae-Hoon;Chung, Suk-Ho
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.11-20
    • /
    • 1999
  • Acoustic pressure response and NO formation of hydrogen-air diffusion flames at various pressures are numerically studied by employing counterflow diffusion flame as a model flame let in turbulent flames in combustion chambers. The numerical results show that extinction strain rate increases linearly with pressure and then decreases, and increases again at high pressures. Thus, flames are classified into three pressure regimes. Such non-monotonic behavior is caused by the change in chemical kinetic behavior as pressure rises. Acoustic pressure response in each regime is investigated based on the Rayleigh criterion. At low pressures, pressure-rise causes the increase in flame temperature and chain branching/recombination reaction rates, resulting in increased heat release. Therefore, amplification in pressure oscillation is predicted. Similar phenomena are predicted at high pressures. At moderate pressures, weak amplification is predicted. Emission index of NO shows similar behaviors as to the peak-temperature variation with pressure.

  • PDF

Characteristics of Turbulent Lifted Flames in Coflow Jet with Initial Temperature Variations (동축류 제트에서 초기 온도 변화에 따른 난류 부상화염 특성)

  • Kim, K.N.;Won, S.H.;Chung, S.H.
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.15-20
    • /
    • 2004
  • Characteristics of turbulent lifted flames in coflow jet have been investigated by varying initial temperature through the heating of coflow air. In the turbulent regime, liftoff height increases linearly with fuel jet velocity and decreases nonlinearly as the coflow temperature increases. This can be attributed to the increase of turbulent propagation speed, which is strongly related to laminar burning velocity. Dimensionless liftoff heights are correlated well with dimensionless jet velocity, which are scaled with parameters determining local flow velocity and turbulent propagation speed. This implies that the turbulent lifted flames are stabilized by balance mechanism between local turbulent burning velocity and flow velocity. Blowout velocity can be obtained from the ratio of mixing time to chemical time. Comparing to previous researches, thermal diffusivity should be evaluated from the initial temperature instead of adiabatic flame temperature.

  • PDF

Feasibility of Composting Combinations of Sewage Sludge, Cattle Manure, and Sawdust in a Rotary Drum Reactor

  • Nayak, Ashish Kumar;Kalamdhad, Ajay S.
    • Environmental Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.47-57
    • /
    • 2014
  • The aim of this paper was to study the effect of five different waste combinations (C/N 15, C/N 20, C/N 25, C/N 30, and control) of sewage sludge coupled with sawdust and cattle manure in a pilot scale rotary drum reactor, during 20 days of the composting process. Our results showed that C/N 30 possesses a higher temperature regime with higher % reduction in moisture content, total organic carbon, soluble biochemical oxygen demand and chemical oxygen demand; and higher % gain in total nitrogen and phosphorus at the end of the composting period implying the total amount of biodegradable organic material is stabilized. In addition, $CO_2$ evolution and oxygen uptake rate decreased during the process, reflecting the stable behavior of the final compost. A Solvita maturity index of 8 indicated that the compost was stable and ready for usage as a soil conditioner. The results indicated that composting can be an alternate technology for the management of sewage sludge disposal.

Oxidation Kinetics of Carbon Fibers

  • Roh, Jae-Seung
    • Carbon letters
    • /
    • v.6 no.1
    • /
    • pp.1-5
    • /
    • 2005
  • Isotropic pitch based carbon fibers were exposed to isothermal oxidation in carbon dioxide gas to study the activation kinetics under the temperature of 800~$1100^{\circ}C$. The kinetic equation $f=1-{\exp}(-at^b)$ was introduced and the constant b was obtained in the range of 0.92~1.25. It was shown that the activated carbon fiber shows the highly specific surface area (SSA) when the constant b comes close to 1. The activation kinetics were evaluated by the reaction-controlling regime (RCR) according to changes of the apparent activation energy with changes of the conversion. It was observed that the activation energies increase from 47.6 to 51.2 kcal/mole with the conversion increasing from 0.2 to 0.8. It was found that the pores of the activated carbon fiber under the chemical reaction were developed well through the fiber.

  • PDF

Characteristics of Turbulent Lifted Flames in Coflow Jet with Initial Temperature Variations (동축류 제트에서 초기 온도 변화에 따른 난류 부상화염 특성)

  • Kim, K.N.;Won, S.H.;Chung, S.H.
    • Journal of the Korean Society of Combustion
    • /
    • v.9 no.1
    • /
    • pp.32-38
    • /
    • 2004
  • Characteristics of turbulent lifted flames in coflow jet have been investigated by varying initial temperature through the heating coflow air. In the turbulent regime, liftoff height increases linearly with fuel jet velocity and decreases nonlinearly as the coflow temperature increases. This can be attributed to the increase of turbulent propagation speed, which is strongly related to laminar burning velocity. Dimensionless liftoff heights are correlated well with dimensionless jet velocity, which are scaled with parameters determining local flow velocity and turbulent propagation speed. This implies that the turbulent lifted flames are stabilized by balance mechanism between local turbulent burning velocity and flow velocity. Blowout velocity can be obtained from the ratio of mixing time to chemical time. Comparing to previous researches, thermal diffusivity should be evaluated from the initial temperature instead of adiabatic flame temperature.

  • PDF

The investigation on the Ignition Delay of n-heptane/n-butanol Blend Fuel using a Rapid Compression Machine at Low Temperature Combustion Regime (저온연소조건에서 급속압축기를 이용한 n-heptane/n-butanol 혼합연료의 착화지연에 관한 연구)

  • Song, Jaehyeok;Kang, Kijoong;Yang, Zheng;Lu, Xingcai;Choi, Gyungmin;Kim, Duckjool
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.25-28
    • /
    • 2013
  • This study presents both experimental and numerical investigation of ignition characteristics of n-heptane and n-butanol mixture. The $O_2$ concentration was fixed to 9-10% to make high exhaust gas recirculation(EGR) rate condition. Experiments were performed using a rapid compression machine. In addition, a numerical study of the ignition delay time was performed using CHEMKIN codes to validate experimental results and predict chemical species after combustion process. The results showed that the ignition delay time increased with increasing n-butanol ratio and the reactivity decreased by low $O_2$ concentration.

  • PDF