• 제목/요약/키워드: chemical pre-treatment

검색결과 368건 처리시간 0.03초

친환경 소재에 대한 플라즈마 가공과 효소가공이 감량률에 미치는 영향 (The Effect of the Enzyme Treatment and the Plasma Pre- Treatment on Environment Friendly Fabrics)

  • 김지현
    • 한국의상디자인학회지
    • /
    • 제11권1호
    • /
    • pp.43-51
    • /
    • 2009
  • The cotton, wool, cotton/wool blended(80:20) and tencel fabrics were treated with low temperature oxygen or argon plasma, enzymes(cellulase or protease), or oxygen plasma-enzyme and examined for their weight loss and conditions for treatment for the environment friendly finishing. In the plasma treatment argon gas had better effect on the weight loss than oxygen gas did and the weight loss of all the fabrics was increased as increasing discharge power and discharge time. The weight loss of cotton, wool, cotton/wool blended(80:20) fabrics decreased in a large measure after 1 hr but that of tencel didn't decrease after 1 hr. In case of cellulose fibers oxygen gas plasma induced chemical functional groups on the surface of substrate more than argon gas plasma did so the weight loss of wool was larger than that of cotton, tencel fabrics in oxygen plasma-enzyme treatment. The weight loss of cotton and tencel fabrics decreased the initial stage because oxygen plasma pre-treatment caused cross linking as well as etching effect but argon plasma pre-treatment didn't. The plasma pre-treatment cleared the way for enzyme treatment on the whole but oxygen plasma pre-treatment bear in hand the increase of weight loss more or less because of the cross linking on the surface of cellulose fibers. The appropriate conditions for plasma treatment was 10-1Torr, 40W for 30minutes and for cellulase treatment were enzyme concentration of $3g/{\ell}$, pH 5, $60^{\circ}C$ for 1hr and for protease treatment were enzyme concentration of $4g/{\ell}$ pH 8, $60^{\circ}C$ for 1hr.

  • PDF

Effects of Pre-aeration on the Anaerobic Digestion of Sewage Sludge

  • Ahn, Young-Mi;Wi, Jun;Park, Jin-Kyu;Higuchi, Sotaro;Lee, Nam-Hoon
    • Environmental Engineering Research
    • /
    • 제19권1호
    • /
    • pp.59-66
    • /
    • 2014
  • The aim of this study was to assess the effect of pre-aeration on sludge solubilization and the behaviors of nitrogen, dissolved sulfide, sulfate, and siloxane. The results of this study showed that soluble chemical oxygen demand in sewage sludge could be increased through pre-aeration. The pre-aeration process resulted in a higher methane yield compared to the anaerobic condition (blank). The pre-aeration of sewage sludge, therefore, was shown to be an effective method for enhancing the digestibility of the sewage sludge. In addition, this result confirms that the pre-aeration of sewage sludge prior to its anaerobic digestion accelerates the growth of methanogenic bacteria. Removal rates for $NH_3$-N and T-N increased simultaneously during pre-aeration, indicating simultaneous nitrification and denitrification. The siloxane concentration in sewage sludge decreased by 40% after 96 hr of pre-aeration; in contrast, the sulfide concentration in sewage sludge did not change. Therefore, pre-aeration can be employed as an efficient treatment option to achieve higher methane yield and lower siloxane concentration in sewage sludge. In addition, reduction of nitrogen loading by pre-aeration can reduce operating costs to achieve better effluent water quality in wastewater treatment plant and benefit the anaerobic process by minimizing the toxic effect of ammonia.

Design of Ultra-sonication Pre-Treatment System for Microalgae CELL Wall Degradation

  • Yang, Seungyoun;Mariappan, Vinayagam;Won, Dong Chan;Ann, Myungsuk;Lee, Sung Hwa
    • International journal of advanced smart convergence
    • /
    • 제5권2호
    • /
    • pp.18-23
    • /
    • 2016
  • Cell walls of microalgae consist of a polysaccharide and glycoprotein matrix providing the cells with a formidable defense against its environment. Anaerobic digestion (AD) of microalgae is primarily inhibited by the chemical composition of their cell walls containing biopolymers able to resist bacterial degradation. Adoption of pre-treatments such as thermal, thermal hydrolysis, ultrasound and enzymatic hydrolysis have the potential to remove these inhibitory compounds and enhance biogas yields by degrading the cell wall, and releasing the intracellular algogenic organic matter (AOM). This paper preproposal stage investigated the effect of different pre-treatments on microalgae cell wall, and their impact on the quantity of soluble biomass released in the media and thus on the digestion process yields. This Paper present optimum approach to degradation of the cell wall by ultra-sonication with practical design specification parameter for ultrasound based pretreatment system. As a result of this paper presents, a microalgae system in a wastewater treatment flowsheet for residual nutrient uptake can be justified by processing the waste biomass for energy recovery. As a conclusion on this result, Low energy harvesting technologies and pre-treatment of the algal biomass are required to improve the overall energy balance of this integrated system.

혼합 소화공정에서 내부반송과 다양한 전처리를 통한 하수 슬러지 처리 (Sewage Sludge Treatment with Internal Recirculation and Diverse Pre-treatment Methods Using Combined Digestion Process)

  • 하정협;최석순;박종문
    • 공업화학
    • /
    • 제29권5호
    • /
    • pp.613-619
    • /
    • 2018
  • 본 연구에서는 유입 슬러지에 다양한 전처리 방법과 고액분리장치를 이용한 유출수의 잉여슬러지를 농축 후 내부반송을 적용하여, 중온혐기-고온호기 혼합 슬러지 처리 공정의 슬러지 소화효율과 메탄가스 생성량에 미치는 영향을 비교 검증하였다. 실험실 규모의 혼합 소화공정장치를 제작하여 서로 다른 유입 슬러지 전처리방법을 적용하여 5단계로 실험을 진행하였다. 1단계에서는 열-알칼리처리 전처리를 하여 슬러지를 공급하였고, 2, 3, 4단계에서는 유출수로부터 농축된 잉여슬러지의 내부반송과 각각 열-알칼리처리, 열처리, 알칼리 처리(7일)를 거친 유입 슬러지를 공급하였다. 마지막 5단계에서는 전처리를 하지 않은 슬러지를 공급하였다. 실험 결과, 1단계에서 4단계까지 진행되는 동안 Volatile Suspended Solid (VSS) 제거율은 유입 슬러지 전처리와 내부반송을 적용하는 경우 크게 증가하였으며, 메탄생성량 또한 2단계에서 슬러지 내부반송과 열-알칼리처리 전처리 적용의 경우 285 mL/L/day까지 크게 증가하였다. 한편, 5단계에서 전처리를 하지 않은 슬러지를 공급하였을 경우 VSS 제거율과 메탄 생성량이 크게 감소하였다. 결론적으로, 유입 슬러지의 열-알칼리처리 전처리와 유출수의 농축 잉여슬러지의 내부반송을 통해 복합 슬러지 처리 공정의 슬러지 제거 효율과 메탄생성량을 크게 증가시킬 수 있었다.

Comparative performance evaluation of two UF pilot plants at the Alto da Boa Vista WTP (São Paulo, Brazil)

  • Oliveira, T.F.;Mierzwa, J.C.
    • Membrane and Water Treatment
    • /
    • 제2권3호
    • /
    • pp.175-185
    • /
    • 2011
  • Ultrafiltration is an emerging technology for drinking water treatment because it produces better water quality as compared with conventional treatment systems. More recently, the combination of UF technology with other processes in order to improve its performance has been observed. These associations aim to maximize the contaminants removal and reduce membrane fouling. The operational performance of contaminants removal and water production of two UF pilot plants was compared. The first plant (Guarapiranga) was fed with raw water and the second plant (ABV) with pre-treated water by the coagulation, flocculation and sedimentation processes at Alto da Boa Vista WTP (Sao Paulo, Brazil). Both units operated continuously for approximately 2,500 hours, from September/2009 to January/2010. The results showed that the ABV UF pilot plant was able to operate at higher specific fluxes (6.2 $L.d^{-1}.m^{-2}.kPa^{-1}$ @ $25^{\circ}C$) than Guarapiranga (3.1 $L.d^{-1}.m^{-2}.kPa^{-1}$ @ $25^{\circ}C$). However, the number of chemical cleanings conducted in both pilot units during the considered operation period was the same (4 chemical cleanings for each plant), which shows that the pre-treatment reduced the membrane fouling. The water quality at ABV for all the variables analyzed was better, but the feed water quality was also better due to pretreatment. The rejection values for the different contaminants were higher at Guarapiranga mainly because of a pollution load reduction after pre-treatment at ABV. Even with the better performance of the ABV UF pilot plant, it is necessary to take into consideration the complexity of the complete treatment system, and also the costs involved in the construction and operation of a full-scale treatment unit.

석유계 잔사유로부터 저온 2단 열처리를 이용한 메조페이스 핏치 제조 및 특성 (Preparation and Characterization of Mesophase Pitches from Petroleum Residues using Two-step Heat Treatment)

  • 조한주;정민정;이형익;이영석
    • 한국수소및신에너지학회논문집
    • /
    • 제27권4호
    • /
    • pp.421-430
    • /
    • 2016
  • To prepare mesophase pitches through low energy process, pyrolysis fuel oil with $AlCl_3$ has been modified using two-step heat treatment which is heat-treated at $330^{\circ}C$ for 3~5 h after pre-treatment at $250^{\circ}C$. The result of polarized optical microscope observation, mesophase is not observed in pitches carried out only pre-heat treatment. While mesophase content is significantly increased from 9% to 100% according to increasing secondary heat treatment time from 3 h to 5 h. Synthesizing of the mesophase pitch at low temperature of $330^{\circ}C$ is attributed to decrease of viscosity of the pitches carried out first heat treatment with $AlCl_3$. The result of Fourier-transform infrared spectroscopic analysis, it is expected that aromatization of aliphatic compounds is dominant at early secondary heat treatment, on the other hand, polycondensation reaction becomes dominant as secondary heat treatment time increases. Aromaticity and stacking height of the pitches secondary heat treated for 5 hours are more increased about 25% and 107%, respectively, than that of pitches carried out only first heat treatment.

열전처리와 반응조 형태가 고형 유기물의 혐기성 처리에 미치는 영향 (Effects of Heat Pre-Treatment and Reactor Configurations on the Anaerobic Treatment of Volatile Solids)

  • 홍영석;배재호
    • 상하수도학회지
    • /
    • 제10권2호
    • /
    • pp.104-116
    • /
    • 1996
  • Anaerobic digestion is generally used for the treatment of volatile organic solids such as manure and sludge from waste water treatment plants. However, the reaction rate of anaerobic process is slow, and thus it requires a large reactor volume. To minimize such a disadvantage, physical and chemical pre-treatment is generally considered. Another method to reduce the reactor size is to adopt different reactor system other than CSTR. In this paper, the effects of heat pre-treatment and reactor configurations on the anaerobic treatability of volatile solids was studied. Carrot, kale, primary sludge, and waste activated sludge was chosen as the test materials, and the BMP method was used to evaluate the maximum methane production and first order rate constants from each sample. After the heat treatment at $130^{\circ}C$ for 30min., the measured increase in SCOD per gram VS was up to 394 mg/L for the waste activated sludge. However, the methane production potential per gram VS was increased for only primary and waste activated sludge by 17-23%, remaining the same for carrot and kale. The overall methane production process for the tested solids can be described by first order reactions. The increased in reaction constant after heat pre-treatment was also more significant for the primary and waste activated sludge than that for carrot and kale. therefore, the heat pre-treatment appeared to be effective for the solids with high protein contents rather than for the solids with high carbohydrate contents. Among the four reactor systems studied, CSTR, PFR, CSTR followed by PFR, and PFR with recycle, CSTR followed by PFR appeared to be the best choice considering methane conversion rate and the operational stability.

  • PDF

석유화학 폐수의 생물학적 처리시간 단축을 위한 오존 산화의 적용 (Application of Ozone Oxidation to Reduce the Biological Treatment Time of Petrochemical Wastewater)

  • 홍은식;김현석;이상희;정진석;신은우;류근갑;유익근
    • 대한환경공학회지
    • /
    • 제28권5호
    • /
    • pp.573-576
    • /
    • 2006
  • The efficacy of integrated ozone oxidation-biodegradation treatment was examined in the treatment of petrochemical wastewater with a special focus on the overall treatment time. When raw wastewater with chemical oxygen demand(COD) of 70-80 mg/L was oxidized by ozone, approximately 20% of initial COD was removed in less than 1.5 min at a dosing rate of 400 mg $O_3/L{\cdot}h $. No further decrease in COD was observed for the extended ozone treatment up to 30 min. Biological treatment alone showed a rapid reduction of COD to 40-50 mg/L, subsequently resulting in the decreased rate of COD removal. Pre-treatment by ozone before biological treatment did not significantly affect the specific rate of COD removal in a biological treatment. When ozone oxidation followed biological treatment, the extent of COD removal by ozone oxidation was greater compared to that of biologically-treated wastewater for a shorter time. Taken together, it was decided that the biological treatment time could be reduced if the treatment processes of concern will be properly arranged.

효소에 의한 방축가공 양모직물의 물성 변화에 관한 연구 (A Study on the Mechanical Properties of Shrink-Resistant Wool Fabric Treated with Enzyme)

  • 박미라;김환철;박병기
    • 한국염색가공학회지
    • /
    • 제13권3호
    • /
    • pp.155-164
    • /
    • 2001
  • Textile wet-processing industry usually five rise to environmental pollution problems caused by using chemical substance. The objective of this study is to apply enzymes for wool and reduce the environmental problems. Three commercial protein degradation enzymes and a cellulose degradation enzyme as a reference were treated to prevent the shrinkage of wool fabric on laundering. Shrink resistant effects used change with the kinds of enzyme, the amount of enzyme, assistant chemicals, and the pre-treatment condition of wool fabric. When pre-treated with corona before enzyme treatment under ultrasonic condition, the weight loss was increased and strength was decreased and elongation was increased. Both corona pre-treatment and the addition of $Na_2SO_4$ also decreased shrinkage of wool fabrics on laundering. The existence of assistant chemicals increased alkali solubility of wool fabrics.

  • PDF

방직용 재생펄프 제조를 위한 면 린터의 자기가수분해 공정 개발 (Development of Auto-hydrolysis Method for Preparing Cotton Linter Regenerated Fibers of Textile Fabrics)

  • 손하늘;박희정;서영범
    • 펄프종이기술
    • /
    • 제47권6호
    • /
    • pp.81-88
    • /
    • 2015
  • The molecular weight (MW) and crystallinity of cotton linter need to be controlled to be dissolved well in N-methylmorpholine N-oxide (NMMO) solvent for manufacturing regenerated fibers of clothing fabrics. Electron beam irradiation or sulfuric acid pre-treatment followed by alkaline peroxide bleaching has been used to control MW effectively and to improve brightness of cotton linter. Auto-hydrolysis of cotton linter without electron beam irradiation or chemical pre-treatment was found to be effective as an alternative pre-treatment method. Removal of metal ions, that hampered dissolution of cotton linter by NMMO, was also investigated when the auto-hydrolysis was accompanied with ionic polymers and chelating agent.