• 제목/요약/키워드: chemical kinetics

검색결과 1,365건 처리시간 0.027초

Dissociation Kinetics of Linear polyaminopolycarboxylate Complexes of Lanthanides(III)

  • Ki-Young Choi;Ki Sung Kim;Choon Pyo Hong
    • Bulletin of the Korean Chemical Society
    • /
    • 제15권9호
    • /
    • pp.782-785
    • /
    • 1994
  • The dissociation kinetics of linear polyaminopolycarboxylate complexes of lanthanide ions (L$n^{3+}: Ce^{3+},\;Eu^{3+}\;and\;Yb^{3+}$) has been studied in an aqueous solution of 0.10 M (NaCl$O_4$) at 25.0${\pm}0.1^{\circ}C$ using Cu(II) ions as a scavenger. The dissociation rates of acid-catalyzed pathway decrease in the order Ln(EPDTA$)^- > Ln(DPOT)^- > In(TMDTA)^- > Ln(MPDTA)^- > Ln(EDTA)^- > Ln(PDTA)^- > Ln(DCTA)^-$ according to the present and literature data. An increase in the N-Ln-N chelate ring from 5 to 6 and substitution of two methyl groups, one ethyl and hydroxyl group on a chelate ring carbon of these ligands leads to a decrease in kinetic stabilities of the complexes. The substitution of one methyl group and cyclohexyl ring on a ring carbon, however, results in a significant increase in the kinetic stability of the resulting $Ln^{3+}$ complexes. Individual reaction steps taking place for each system, with different copper, acetate buffer concentration and pH dependence, are also discussed.

Kinetics and Mechanism of $N_2H_4-KBrO_3$ Reaction in the Presence of Allyl Alcohol$^\dag$

  • Choi, Q.-Won;Chung, Keun-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제7권6호
    • /
    • pp.462-465
    • /
    • 1986
  • Kinetics and Mechanism of $N_2H_4-KBrO_3$ reaction in the presence of allyl alcohol have been studied. The pseudo-first order rate constant for gas evolution was found to be $10^{-4}{\sim}10^{-2}\;sec^{-1}\;at\;25.0{\pm}0.1^{\circ}C$, increasing with concentration of hydrogen ion. When concentrations of sulfuric acid and allyl alcohol are both sufficiently high, the following overall reaction explains experimental results reasonably well: $N_2H_4\;+\;BrO_3^-\;+\;H^+\;{\to}\;N_2\;+\;HOBr\;+\;2H_2O,\;CH_2\;=\;CHCH_2OH\;+\;HOBr\;{\to}\;CH_2-OHCHBrCH_2OH$. More complicated reaction mechanisms at lower acidity conditions have been contemplated.

The Chemical Kinetics for the Reaction of O(³P) with Ethylene

  • 임종태;조경용;최창열;박호림;최중길;Simon H. Bauer
    • Bulletin of the Korean Chemical Society
    • /
    • 제16권7호
    • /
    • pp.595-600
    • /
    • 1995
  • The kinetics of the reaction between O(3P) and C2H4 was investigated by measuring time-dependent concentrations of OH resulting from the reaction by using the LIF detection. Oxygen atoms were generated by titrating microwave discharged N2/He with NO to the chemiluminescent end point. The operating pressures in the flow reactor ranged from 5 to 15 torr and the mixtures consisted of He/O(3/P)/C2H4 in the approximate ratios from 100/1/0.1 to 100/1/1. The controlled residence time prior to the detection were estimated to be 0.8-17 ms at the reactor pressure of 7 torr. Experimentally determined profiles both in shape and magnitude were compared with the computed OH density for a specified set of experimental parameters, allowing us to arrive at a complete mechanism for the reaction of O(3P) with ethylene.

Advanced Membrane Systems for Seawater Desalination. Kinetics of Salts Crystallization from RO Brines Promoted by Polymeric Membranes

  • Curcio, Efrem;Obaidani, Sulaiman Al;Macedonio, Francesca;Profio, Gianluca Di;Gualtieri, Silvia;Drioli, Enrico
    • 멤브레인
    • /
    • 제17권2호
    • /
    • pp.93-98
    • /
    • 2007
  • The reliability of innovative membrane contactors technology (i.e. Gas/Liquid Membrane Contactors, Membrane Distillation/Crystallization) is today increasing for seawater desalination processes, where traditional pressure-driven membrane separation units are routinely operated. Furthermore, conventional membrane operations can be integrated with membrane contactors in order to promote possible improvements in process efficiency, operational stability, environmental impact, water quality and cost. Seawater is the most abundant aqueous solution on the earth: the amount of dissolved salts covers about 3% of its composition, and six elements (Na, Mg, Ca, K, Cl, S) account for more than 90% of ionic species. Recent investigations on Membrane Distillation-Crystallization have shown the possibility to achieve significant overall water recovery factors, to limit the brine disposal problem, and to recover valuable salts (i.e. calcium sulphate, sodium chloride, magnesium sulphate) by combining this technology with conventional RO trains. In this work, the kinetics of $CaSO_4{\cdot}2H_2O,\;NaCl\;and\;MgSO_4{\cdot}7H_2O$ crystallization is experimentally investigated in order to improve the design of the membrane-based crystallization unit.

Textile dye wastewater treatment using coriolus versicolor

  • Sathian, S.;Radha, G.;Priya, V. Shanmuga;Rajasimman, M.;Karthikeyan, C.
    • Advances in environmental research
    • /
    • 제1권2호
    • /
    • pp.153-166
    • /
    • 2012
  • Decolourization potential of white rot fungal organism, coriolus versicolor, was investigated in a batch reactor, for textile dye industry wastewater. The influence of process parameters like pH, temperature, agitation speed and dye wastewater concentration on the decolourization of textile dye wastewater was examined by using Response surface methodology (RSM). The maximum decolourization was attained at: pH- 6.8, temperature - $27.9^{\circ}C$, agitation speed - 160 rpm and dye wastewater concentration - 1:2. From the analysis of variance (ANOVA) results it was found that, the linear effect of agitation speed and dye wastewater concentration were significant for the decolourization of textile dye wastewater. At these optimized condition, the maximum decolourization and chemical oxygen demand (COD) reduction was found to be 64.4% and 79.8% respectively. Various external carbon sources were tried to enhance the decolourization of textile dye wastewater. It was observed that the addition of carbon source enhances the decolourization of textile dye wastewater. Kinetics of textile dye degradation process was studied by first order and diffusional model. From the results it was found that the degradation follows first order model with $R^2$ value of 0.9430.

Kinetically Controlled Growth of Gold Nanoplates and Nanorods via a One-Step Seed-Mediated Method

  • Hong, Soonchang;Acapulco, Jesus A.I. Jr.;Jang, Hee-Jeong;Kulkarni, Akshay S.;Park, Sungho
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권6호
    • /
    • pp.1737-1742
    • /
    • 2014
  • In this research, we further developed the one-step seed mediated method to synthesize gold nanoparticles (GNPs) and control their resulting shapes to obtain hexagonal, triangular, rod-shaped, and spherical gold nanostructures. Our method reveals that the reaction kinetics of formation of GNPs with different shapes can be controlled by the rate of addition of ascorbic acid, because this is the critical factor that dictates the energy barrier that needs to be overcome. This in turn affects the growth mechanism process, which involves the adsorption of growth species to gold nanoseeds. There were also observable trends in the dimensions of the GNPs according to different rates of addition of ascorbic acid. We performed further analyses to investigate and confirm the characteristics of the synthesized GNPs.

Adsorption of Carbon Dioxide onto Tetraethylenepentamine Impregnated PMMA Sorbents with Different Pore Structure

  • Jo, Dong Hyun;Park, Cheonggi;Jung, Hyunchul;Kim, Sung Hyun
    • Korean Chemical Engineering Research
    • /
    • 제53권3호
    • /
    • pp.382-390
    • /
    • 2015
  • Poly(methyl methacrylate) (PMMA) supports and amine additives were investigated to adsorb $CO_2$. PMMA supports were fabricated by using different ratio of pore forming agents (porogen) to control the BET specific surface area, pore volume and distribution. Toluene and xylene are used for porogens. Supported amine sorbents were prepared by wet impregnation of tetraethylenepentamine (TEPA) on PMMA supports. So we could identify the effect of the pore structure of supports and the quantity of impregnated TEPA on the adsorption capacity. The increased amount of toluene as pore foaming agent resulted in the decreased average pore diameter and the increased BET surface area. Polymer supports with huge different pore distribution could be fabricated by controlling the ratio of porogen. After impregnation, the support with micropore structure is supposed the pore blocking and filling effect so that it has low $CO_2$ capacity and kinetics due to the difficulty of diffusing. Macropore structure indicates fast adsorption capacity and low influence of amine loading. In case of support with mesopore, it has high performance of adsorption capacity and kinetics. So high surface area and meso-/macro- pore structure is suitable for $CO_2$ capture.

Kinetics of Thermal Inactivation of Peroxidases and Polyphenol Oxidase in Pineapple (Ananas comosus)

  • Lee, Ting Hun;Chua, Lee Suan;Tan, Eddie Ti Tjih;Yeong, Christina;Lim, Chew Ching;Ooi, Siew Yin;Aziz, Ramlan bin Abdul;Aziz, Azila binti;Sarmidi, Mohd Roji bin
    • Food Science and Biotechnology
    • /
    • 제18권3호
    • /
    • pp.661-666
    • /
    • 2009
  • The heat tolerance and the inactivation kinetics of peroxidase (POD) and polyphenol oxidase (PPO) in pineapples (Ananas comosus) were studied in the temperature range $45-95^{\circ}C$. The kinetic parameters, such as deactivation rate constant (k), activation energy ($E_a$), and decimal reduction rate (D) of the thermal inactivation process, were determined. POD in pineapples showed biphasic inactivation behavior at temperatures range $45-75^{\circ}C$ but was monophasic at $85-95^{\circ}C$. This indicate that POD has 2 isozymes, namely heat labile and heat resistant, with $E_a$ of 68.79 and 93.23 kJ/mol, respectively. On the other hand, the heat denaturation of pineapple PPO could be described as simple monophasic first-order behavior with $E_a$ of 80.15 kJ/mol. Thus, the results of this study is useful in blanching technology where it shows a shortened time with higher temperature can be applied. The determination of the heat tolerance and inactivation POD and PPO, at different temperature range as done in the present work, was very important to improve the blanching process. This also will help to optimize the pineapple canning process which is one of the most important food industries in many tropical regions.

Induction Parameter Modeling을 이용한 열 분해된 JP-7 연료 /산소 혼합기의 데토네이션 파 해석 (Detonation Wave Simulation of Thermally Cracked JP-7 Fuel/Oxygen Mixture using Induction Parameter Modeling)

  • 조덕래;신재렬;최정열
    • 한국항공우주학회지
    • /
    • 제37권4호
    • /
    • pp.383-391
    • /
    • 2009
  • JP-7/산소 혼합기의 데토네이션 파 특성을 상세 반응 기구로부터 얻은 일 단계 유도 변수 모델을 (IPM) 이용하여 살펴보았다. 탄화수소 혼합기에 대한 상세 화학 반응 모델로 부터 신뢰할 만한 일 단계 반응 모델을 얻기 위한 일반적 과정을 본 연구에서 제시하였다. IPM은 상세 반응 모델 라이브러리로부터 획득한 유도 시간 데이터베이스를 재구성하여 얻었으며, 상세 반응 모델에 의한 결과와 비교하여 확인하였다. 이후 IPM을 유체역학해석 코드에 적용하였으며, 데토네이션 파 전파에 대한 수치해석에 이용하였다. 수치해석 결과는 탄화수소 연료 연소의 상세 반응 기구를 직접 적용해서는 가능하지 않은, JP-7/산소 혼합기의 데토네이션 파 전파 특성의 상세한 특징을 보여주었다.

알칼리성 용매에서 과망간에 의한 세프포독심 프록세틸의 산화의 분광광도법적 조사: 속도론적 연구 (Spectrophotometric Investigation of Oxidation of Cefpodoxime Proxetil by Permanganate in Alkaline Medium: A Kinetic Study)

  • Khan, Aftab Aslam Parwaz;Mohd, Ayaz;Bano, Shaista;Siddiqi, K. S.
    • 대한화학회지
    • /
    • 제53권6호
    • /
    • pp.709-716
    • /
    • 2009
  • 일정한 이온 세기의 알칼리 용액에서 과망간산에 의한 프포독심 프록세틸(Cefpodoxime Proxetil) 의 산화의 속도론적 경로가 분광광도법적으로 연구되었다. 그 반응은 과망간산 이온 농도에서 일차 속도론적으로 나타났으며, 프포독심 산과 알칼리 농도에서 단일 이하의 차수를 나타내었다. 용매의 이온 세기가 증가함에 따라 속도도 증가하였다. 산화 반응은 프포독심 산과 함께 복합체를 형성하는 알칼리-과망간산 종들을 통하여 진행된다. 반응물을 만들기 위해서 프포독심 산의 자유 라디칼과 과망간산의 다른 분자 사이의 빠른 반응에 이어서 다음 분해가 천천히 진행된다. 다양한 온도에서 반응의 조사는 제안하는 메커니즘의 느린 단계를 고려한 활성화 변수들의 결정할 수 있게 하고 일차 속도론을 따른다. 제안하는 메커니즘과 유도된 속도 법칙들은 관찰된 속도들과 일치하였다.