• Title/Summary/Keyword: chemical factory

Search Result 142, Processing Time 0.027 seconds

A Six Sigma Application Case Study to Improve a Rolled Throughput Yield of an Automobile Steering Wheel Manufacturing Process (자동차 Steering Wheel 제조공정의 누적수율 개선을 위한 6시그마 적용사례)

  • Park, Jong-In;Lee, Dong-Kyu;Byun, Jai-Hyun
    • Journal of Korean Society for Quality Management
    • /
    • v.33 no.1
    • /
    • pp.32-41
    • /
    • 2005
  • This paper presents a six sigma application case study for an automobile steering wheel manufacturing process using rolled throughput yield improvement activity. Hidden factory and first pass yield concept is introduced and a DMAIC procedure is implemented to maximize the first pass yield. The result of the six sigma project amounts to the reduction of failure cost of 1.2 billion won per year in the steering wheel manufacturing process. This paper can benefit six sigma practitioners in some ways.

Enhanced and Balanced Microalgal Wastewater Treatment (COD, N, and P) by Interval Inoculation of Activated Sludge

  • Lee, Sang-Ah;Lee, Nakyeong;Oh, Hee-Mock;Ahn, Chi-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.9
    • /
    • pp.1434-1443
    • /
    • 2019
  • Although chemical oxygen demand (COD) is an important issue for wastewater treatment, COD reduction with microalgae has been less studied compared to nitrogen or phosphorus removal. COD removal is not efficient in conventional wastewater treatment using microalgae, because the algae release organic compounds, thereby finally increasing the COD level. This study focused on enhancing COD removal and meeting the effluent standard for discharge by optimizing sludge inoculation timing, which was an important factor in forming a desirable algae/bacteria consortium for more efficient COD removal and higher biomass productivity. Activated sludge has been added to reduce COD in many studies, but its inoculation was done at the start of cultivation. However, when the sludge was added after 3 days of cultivation, at which point the COD concentration started to increase again, the algal growth and biomass productivity were higher than those of the initial sludge inoculation and control (without sludge). Algal and bacterial cell numbers measured by qPCR were also higher with sludge inoculation at 3 days later. In a semi-continuous cultivation system, a hydraulic retention time of 5 days with sludge inoculation resulted in the highest biomass productivity and N/P removal. This study achieved a further improved COD removal than the conventional microalgal wastewater treatment, by introducing bacteria in activated sludge at optimized timing.

High-Throughput In Vitro Screening of Changed Algal Community Structure Using the PhotoBiobox

  • Cho, Dae-Hyun;Cho, Kichul;Heo, Jina;Kim, Urim;Lee, Yong Jae;Choi, Dong-Yun;Yoo, Chan;Kim, Hee-Sik;Bae, Seunghee
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.11
    • /
    • pp.1785-1791
    • /
    • 2020
  • In a previous study, the sequential optimization and regulation of environmental parameters using the PhotoBiobox were demonstrated with high-throughput screening tests. In this study, we estimated changes in the biovolume-based composition of a polyculture built in vitro and composed of three algal strains: Chlorella sp., Scenedesmus sp., and Parachlorella sp. We performed this work using the PhotoBiobox under different temperatures (10-36℃) and light intensities (50-700 μmol m-2 s-1) in air and in 5% CO2. In 5% CO2, Chlorella sp. exhibited better adaptation to high temperatures than in air conditions. Pearson's correlation analysis showed that the composition of Parachlorella sp. was highly related to temperature whereas Chlorella sp. and Scenedesmus sp. showed negative correlations in both air and 5% CO2. Furthermore, light intensity slightly affected the composition of Scenedesmus sp., whereas no significant effect was observed in other species. Based on these results, it is speculated that temperature is an important factor in influencing changes in algal polyculture community structure (PCS). These results further confirm that the PhotoBiobox is a convenient and available tool for performance of lab-scale experiments on PCS changes. The application of the PhotoBiobox in PCS studies will provide new insight into polyculture-based ecology.

Selection of coagulant using jar test and analytic hierarchy process: A case study of Mazandaran textile wastewater

  • Asadollahfardi, Gholamreza;Zangooei, Hossein;Motamedi, Vahid;Davoodi, Mostafa
    • Advances in environmental research
    • /
    • v.7 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • Textile factories are one of the industries which its wastewater treatment is a challenging issue, especially in developing countries and a conventional treatment cannot treat all its pollutants properly. Using chemical coagulants is a technique for physical and chemical primary treatment of the wastewater. We applied jar test for selection of suitable coagulant among the five coagulants including alum, calcium hydroxide, ferrous sulfate, ferrous chloride and barium chloride for the effluent of wastewater in Mazandran textile factory located in Mazandran Province, Iran. In addition, jar test, we also used analytic hierarchy process (AHP) method considering criteria which included coagulation cost, sensitivity to pH change, the amount of sludge generation and side effects for coagulation. The results of the jar test indicated that calcium hydroxide was proper among the coagulants which it removed 92.9% total suspended solid (TSS), 70% dye and 30% chemical oxygen demand. The AHP analysis presented that calcium hydroxide is more suitable than other coagulants considering five criteria.

Physicochemical and Antioxidant Properties of Broccoli Sprouts Cultivated in the Plant Factory System (식물공장 시스템에서 재배한 브로콜리 새싹의 건조방법에 따른 이화학 및 항산화 특성 연구)

  • Kim, Eun Ji;Kim, Tae Su;Kim, Mi Hye
    • Journal of the Korean Society of Food Culture
    • /
    • v.28 no.1
    • /
    • pp.57-69
    • /
    • 2013
  • Recently, an interest in functional foods has been increasing. It was recommended placing a short definition. Therefore, we performed research on the chemical functions and antioxidant ability of broccoli. This research is vital for preparing the most favorable conditions and environment for highly-functional broccoli. Broccoli produced after applying sprouting and light sources were used for research. The chemical properties of the broccoli, including composition, free sugar, citric acid, mineral and vitamin (A, C, E) content, were analyzed. In addition, the ability of broccoli compounds to reduce total phenolic compounds, SOD-liked activity, EDA (electron donating ability), and hydroxyl radicals were inspected. Total analysis relied on the SAS (statistical analysis system). Broccoli sprouts produced through plant factory system's photosynthesis, treated under different light sources, had superior amounts of crude protein, crude fat, and crude ash, compared to normal sprouts under fluorescent light. Is it a facility or does it refer to the inner metabolism of the cell? Broccoli sprouts under red light had superior amounts of glucose, fructose, malic acid, and oxalic acid, while broccoli sprouts under turquoise light had superior amounts of citric acid. Broccoli sprouts under white light had superior amounts of various minerals, such as potassium, magnesium, and sodium. In terms of antioxidant activity, data from the plant factory system shows an increase in EDA antioxidants (1.63 mg/mL, 30.82%). Sprouts applied with turquoise light had superior amounts of hydroxyl radical scavenging (65.62%), and sprouts applied with white light had superior amounts of activated SOD-like activity (52.69%). Research on dehydrated broccoli sprouts showed that sprouts dehydrated with cold air had superior amount of malic, citric, oxalic acid compared to sprouts dehydrated with hot air. In terms of vitamin levels, sprouts dehydrated with cold air had five times the normal amount of vitamin A and E, whereas sprouts dehydrated with hot air had higher amounts of vitamin C. Dehydration at low temperature also produced a higher amount of activated antioxidants (1.6 mg/mL of activated antioxidant ability, 63.04% of SOD-like activity, and 67.76% of hydroxyl radical scavenging). Our results show that antioxidant ability can vary by the type of photosynthesis and temperature level in which the sprouts are dehydrated. Therefore, thorough foundational data is required to product the most functional broccoli.

Numerical Simulation of the Odor Spreading in a Factory (공장에서 퍼지는 냄새에 관한 수치계산적 연구)

  • Vincent, Lijo;Song, Eun-Hwa;Nam, Hyun-Kyu;Shin, Choon-Sik;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2540-2543
    • /
    • 2008
  • Liquid crystal displays (LCD's) are continuously coated with some chemicals in the clean room of a factory. Spreading of these chemicals is causing serious problems both in controlling clean room quality as well as to the workers inside the factory. It is required to alleviate or properly control the offensive odor which is mainly composed of propylene glycol mono ethyl acetate, novolak resin and photo active compound. The control strategy employed is to bleed the offensive odor gas out the clean room. A full scale 3D CFD model was created with anisotropic porous media, chemical species transport with no volumetric reaction, and thermal diffusion with propane gas (tracer gas) to simulate the odor spreading. A segregated implicit solver with standard k-$\varepsilon$ model is employed. The detailed CFD analysis made it possible to develop an effective method of ventilating the coater room and optimizing their capacities.

  • PDF

Modular reactors: What can we learn from modular industrial plants and off site construction research

  • Paul Wrigley;Paul Wood;Daniel Robertson;Jason Joannou;Sam O'Neill;Richard Hall
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.222-232
    • /
    • 2024
  • New modular factory-built methodologies implemented in the construction and industrial plant industries may bring down costs for modular reactors. A factory-built environment brings about benefits such as; improved equipment, tools, quality, shift patterns, training, continuous improvement learning, environmental control, standardisation, parallel working, the use of commercial off shelf equipment and much of the commissioning can be completed before leaving the factory. All these benefits combine to reduce build schedules, increase certainty, reduce risk and make financing easier and cheaper.Currently, the construction and industrial chemical plant industries have implemented successful modular design and construction techniques. Therefore, the objectives of this paper are to understand and analyse the state of the art research in these industries through a systematic literature review. The research can then be assessed and applied to modular reactors.The literature review highlighted analysis methods that may prove to be useful. These include; modularisation decision tools, stakeholder analysis, schedule, supply chain, logistics, module design tools and construction site planning. Applicable research was highlighted for further work exploration for designers to assess, develop and efficiently design their modular reactors.

Graphiumins I and J, New Thiodiketopiperazines from the Marine-derived Fungus Graphium sp. OPMF00224

  • Fukuda, Takashi;Nagai, Kenichiro;Kurihara, Yuko;Kanamoto, Akihiko;Tomoda, Hiroshi
    • Natural Product Sciences
    • /
    • v.21 no.4
    • /
    • pp.255-260
    • /
    • 2015
  • Two new thiodiketopiperazines (TDKPs), designated graphiumins I (1) and J (2), were isolated from the culture broth of the marine-derived fungus Graphium sp. OPMF00224 by solvent extraction, silica gel column chromatography, and HPLC. Their absolute structures were elucidated by spectroscopic analyses (1D and 2D NMR data, ROESY correlations, and CD data) and chemical methods. They were found to be structurally rare TDKPs with a phenylalanine-derived indolin substructure. Compounds 1 and 2 inhibited yellow pigment production by methicillin-resistant Staphylococcus aureus (MRSA) with $IC_{50}$ values of 63.5 and $76.5{\mu}g/ml$, respectively, without inhibiting its growth, even at $250{\mu}g/ml$.

A Model Development of Injury Prevention for Application in the Semiconductor Industry (반도체 산업에서의 재해 예방 모델 개발)

  • Yoon, Yong-Gu;Hong, Sung-Man;Park, Peom
    • Journal of the Korea Safety Management & Science
    • /
    • v.4 no.3
    • /
    • pp.1-11
    • /
    • 2002
  • It has been Management for stabilize Enterprise-Management for Economic demand for to Productivity, Automation, customer satisfaction, Especially Semiconductor-Industry has been, potential-risk in working to factory to machine equipment, all kinds of utility, gas, chemical, electronic, Fire. This study of basic-purpose has Research Different From as Follow to analysis and Solution For semiconductor product Factory of a actual point Data and specific-gravity to Relation for company-Injury. 1. It has been try to Injury-Tendency and cause-Analysis for our County-Manufacture-Occupation. 2, Semiconductor Injury of Actual-condition in Enforcement for problem and Analysis that Injury Problem has occupated it Submitted to Solution for ordinary Injury theory View to point Solve at for New Model has applicated to that nilem for processed to Solution.