• Title/Summary/Keyword: chemical facilities

Search Result 629, Processing Time 0.034 seconds

Soil Physico-chemical Properties of Organic Grapes Farms with Different Culture Facilities and Soil Management Practices

  • Kim, Sun-Kook;Kim, Byeong-Sam;Kang, Beom-Ryong;Yang, Seung-Koo;Kim, Byeong-Ho;Kim, Hee-Kwon;Kim, Hyun-Woo;Choi, Kyeong-Ju
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.5
    • /
    • pp.399-407
    • /
    • 2013
  • Organic grape was generally produced in rainshield or plastic greenhouse culture while most of fruits were produced in open field. But little attention has been given to soil properties with different culture facilities in organic grape cultivation. This study was conducted to investigate soil physico-chemical properties of organic grapes farms with different culture facilities and soil management practices. Organic fertilizer was main resource to manage soil at organic grapes farms. Organic grapes farms were applied with total amount of organic fertilizer at one time, either at basal or additional fertilization, whereas conventional grapes farms applied with split fertilization. Bulk density and penetration resistance of soil were lower at both rainshield and green manure-applied plastic greenhouse cultures than those at clean plastic greenhouse culture. Especially, in plastic greenhouse, sod culture with natural weed after green manure application was more effective than general sod culture in improving physical properties of the rhizosphere. The contents of organic matter, available phosphate and exchangeable potassium tended to increase in the soils applied with green manure, and the difference of soil chemical properties were significant between rainshield and plastic greenhouse cultures. The optimum soil management was required in plastic greenhouse because pH, available phosphate and exchangeable cations reached over optimum range. Consequently, the ground cover management is the key factor to affect the chemical properties as well as soil physical properties extensively in plastic greenhouse. It is found that sod culture with natural weed after green manure application resulted in enhancement of utilization efficiency of nitrogen, phosphoric acid and potassium in soil in comparison with general sod culture.

A Study of Early Warning System for Gas Facilities (가스 시설의 조기 경보 시스템에 대한 연구)

  • Lee Jeong Woo;Yoo Jin Hwan;Ko Jae Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.3 s.28
    • /
    • pp.38-43
    • /
    • 2005
  • There is monitored amount operation variables and controlled by operating conditions and loads at many facilities using gas also chemical plants. The process fault which can be indicated by operators, is occurred when the abnormal state was accumulated continuously owing to physical failure, external disturbance or human error. This is studied a Early Warning System which is to estimate process status by real-time monitoring operation variables and to early warning before it will be occurred process fault.

  • PDF

Quantitative Risk Assessment of City Gas Facilities Using Geographic Information System (지리정보시스템을 이용한 도시가스시설의 정량적 위험성 평가)

  • Lee Jeung-Woo;Kim Ky-Soo;Ko Jae-Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.2
    • /
    • pp.12-17
    • /
    • 1998
  • The number of fuel gas accidents is increasing in domestic fuel gas facilities as increasing the supply area. To prevent gas accident, the government institutions related to fuel gas industry partly collected and managed the information of physical properties and safety data. Due to the overlap of data between institutions, collecting and managing the safety information was inefficient. The purpose of this research is developing geographic information system which providing the information of quantitative risk assessment, accident prevention plan, and efficient sharing and managing of the system.

  • PDF

Optimization of Designing Barrier to Mitigate Hazardous Area in Hydrogen Refueling Stations (수소충전소 폭발위험장소 완화를 위한 확산차단벽 최적화 설계)

  • SEUNGHYO AN;SEHYEON OH;EUNHEE KIM;JUNSEO LEE;BYUNGCHOL MA
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.6
    • /
    • pp.734-740
    • /
    • 2023
  • Hydrogen emphasis on safety management due to its high potential for accidents from wide explosive limits and low ignition energy. To prevent accidents, appropriate explosion-proof electrical equipment with installed to safe management of ignition sources. However, designing all facilities with explosion-proof structures can significantly increase costs and impose limitations. In this study, we optimize the barrier to effectively control the initial momentum in case of hydrogen release and form the control room as a non-hazardous area. We employed response surface method (RSM), the barrier distance, width and height of the barrier were set as variables. The Box-Behnken design method the selection of 15 cases, and FLACS assessed the presence of hazardous area. Analysis of variance (ANOVA) analysis resulting in an optimized barrier area. Through this methodology, the workplace can optimize the barrier according to the actual workplace conditions and classify reasonable hazardous area, which is believed to secure safety in hydrogen facilities and minimize economic burden.

A Study on the Improvement of Methodologies for Establishing a Vulnerability Classification of Chemical Terrorism in Public Facilities (다중이용시설 화학테러 취약등급설정 방법론 개선에 대한 연구)

  • Joo, Sun Ho;Kim, Si-Kuk;Hong, Sungchul
    • Fire Science and Engineering
    • /
    • v.34 no.1
    • /
    • pp.89-102
    • /
    • 2020
  • Chemical terrorism using toxic and flammable gases, which could be fatal to the health of the human body, poses a serious threat to the security of most advanced countries, as well as those that are suffering from local disputes, due to the asymmetric information that exists between terrorist actors and victims. The countermeasures against chemical terrorism can be roughly divided into three stages: prevention, response, and probation. The critical factors for each professional response agency, and the personnel that determine the degree and range of chemical terrorism damage, are performing missions successfully in the process of the prevention and the response stage against chemical terrorism. To do this, conducting objective and systematical assessments on facilities that could potentially be the subject of chemical terrorism is more important than anything. In this study, we compared the existing domestic and foreign vulnerable classification systems for chemical terrorism, reviewed the current direction of improvement in domestic classification systems, and suggested more scientific and systematic methodologies through the vulnerability assessment on an actual public facility sample.

A Seasonal Risk Analysis and Damage Effects Assessment by Gas Leakage of Chemical Plant using 3D Scan and FLACS (3D 스캔과 FLACS를 활용한 화학플랜트 가스 누출의 계절별 위험성 및 피해영향 평가)

  • Kim, Jiyoung;Kim, Jiyu;Kim, Euisoo
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.4
    • /
    • pp.1-9
    • /
    • 2021
  • The process and facilities of modern chemical plants are becoming increasingly complex, there is possibility of potential risk. Internal chemicals generate stress concentration when operated due to turbulence, laminar flow, pressure, temperature, friction, etc. It causes cumulative fatigue damage, which can damage or rupture chemical facilities and devices. The statistics of chemical accidents found that the highest rate of occurrence was in summer, and in the last five years statistics on chemical accidents, leakage incidents make up a decent percentage of accidents. Chemical leaks can cause serious human damage and economic damage, including explosions and environmental pollution. In this study, based on the leak accident of chemical plant, the risk analysis, and damage effects assessment were estimated using a 3D scanner and FLACS. As a result, if chemicals leak in summer, the risk is higher than in other seasons, the seasonal safety management measures, and countermeasure were estimated.

Hazardous Material Process Risk Evaluation Using HAZOP and Bow-tie (HAZOP 및 BOW-TIE를 이용한 위험물질 취급공정의 위험성평가)

  • Min-Seo Nam;Byung-Tae Yoo
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.1
    • /
    • pp.35-43
    • /
    • 2024
  • With continuous advancements in industry, science, and technology, there is a steady increase in the number and utilization of new chemicals. The growing societal emphasis on chemical safety management is paralleled by an increasing public demand for robust safety measures. While various ministries at the government level oversee the safety management of chemical substances, the occurrence of accidents related to chemical substances remains frequent each year due to problems such as aging facilities and careless handling. Upon analyzing domestic chemical accident cases, incidents occurred predominantly in the sequence of leakage, explosion, fire, and others. The main causes of these accidents were examined, revealing facility defects and non-compliance with safety management as the primary contributing factors. In this study, Hazard and Operability Analysis (HAZOP) was employed to identify hazardous risk factors associated with the handling of hydrofluoric acid in workplaces, and a risk assessment was performed using Bow-Tie method. Based on the results of this study, it is expected to enhance safety management plans aimed at preventing chemical accidents in workplaces dealing with similar facilities. Ultimately, these insights contribute to the development of an advanced chemical safety management system, capable of proactively preventing potential chemical accidents.

Seasonal and Locational Concentrations of Particulate Air Pollutants in Indoor Air of Public Facilities in Taegu Area (대구지역 공중위생법 규제대상시설의 실내공기중 입자상 오염물질의 계절별 및 지점별 농도분포 특성)

  • 백성옥;송희봉
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.3
    • /
    • pp.163-176
    • /
    • 1998
  • In this study, airborne particle samples were obtained to determine the concentrations of particulate air pollutants in indoor and outdoor air of public facilities in Taegu area. Total of 12 public facilities, regulated by the Public Sanitary Law, were selected as sampling sites, which include three underground arcades, one railway and two bus terminals, three general hospitals, and three department stores. In each place, sampling was carried out seasonally during the period of October 1994 to July 1995, and four samples per each site per season were collected both indoors and outdoors simultaneously. After determination of suspended particulate matter (SPM) mass concentrations, the particle samples were divided into two parts for subsequent chemical analysis: one for the analysis of trace elements and the other for water soluble ions. Seasonal levels of SPM appeared to be the highest in spring and the lowest in summer both indoors and outdoors, while locational variations of highest in statioyterminals, and lowest in department stores . SPM concentrations indoors and outdoors did not show any significant differences each other in most places . However, there were significant correlations between indoor and outdoor levels of SPM and other chemical species . These results indicates that indoor SPM levels are likely to be significantly affected by outdoor sources in many places. The most significant source of SPM was estimated to be the resuspension of soil/road dust both indoors and outdoors . The concentrations of toxic heavy metals (Pb, Cd, Cr, Cu) in underground arcades appeared to be very much lower than the established air quality guidelines for underground environments. In addition, it is likely that micro-environmental parameters such as temperature, humidity, and air velocity, play a less significant role than outdoor air quality as a factor affecting the levels of particulate pollutants in indoor environments of public facilities in Taegu area.

  • PDF

A Study on the Fluoro-polymer Composite Coatings for Protecting the Corrosion of Fossil-fuel Power Plants

  • Kang, Min Soo;Lee, Byung Seung;Chang, Hyun Young;Jin, Tae Eun;So, Il Soo
    • Corrosion Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.62-67
    • /
    • 2007
  • Several heavy duty coatings at an every kind industry facilities to various systems currently have been applied review to the many industry fields. Corrosion-protective characteristics in the case of novolac epoxy among them and unsaturated polyester have been applied most widely. epoxy and flake heavy duty coatings are applied for such reason in an every kind facilities(stack, FGD, cooler, chemical tank etc) of a fossil-fuel power plants Cases of the fossil-fuel power plants are exposed to more severe corrosion environment compared with other facilities and It is difficult to display the performance of long-term method at apply to be the partial. Our study shows fluoro-polymer composite coating method to overcome of the limit. The comparison did previous method and heavy duty coating about FGD plants most at a corrosion environment among fossil-fuel power plants. Additionally, other facilities examined different heavy duty method. The design mode of fluoro-polymer composite coating according to an every kind facilities show extensive methods that are characteristic revelation of film(top, middle and primer layer) composition of the paint, film thickness in accordance with a facilities corrosion and the corrosion protective effectiveness to come into being use fluoro-polymer composite with heavy duty paint(epoxy).

A Study on Applicability of API-581 and Methodology for Consequence Analysis in High-Pressure Toxic Gas Facilities (고압 독성가스시설에서 API-581 적용성 및 사고결과 분석방법에 관한 연구)

  • Jang, Seo-Il;Kim, Youngran;Park, Kyoshik;Shin, Dongil;Kim, Tae-Ok
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.4
    • /
    • pp.76-85
    • /
    • 2014
  • To establish the necessary safety technology in high-pressure toxic gas facilities, especially for the corrosion, which is the main causes of toxic gas accident, this study adopts and investigates the API-581 procedures developed by the American Petroleum Institute (API). And the applicability of the 8-step analytical procedures of consequence analysis in API-581 is discussed, and a method for consequence analysis in high-pressure toxic gas facilities is suggested. Based on the discussion and results, the analytical procedure is simplified as the 6 steps in total for the effective application to high-pressure toxic gas facilities: Step 1 (determination of representative material), Step 5 (determination of release type), Step 6 (determination of phase of fluid), and Step 8 (estimation of damage range) are not applied: Step 3 (estimation of total amount of release) is applied only for the inventory group concept; Step 4 (estimation of release rate) only for the gas release rate; and all of Step 2 (selection of release hole size) and Step 7 (evaluation of post-release response) are applied. In the proposed method, the generally applicable method of CCPS is adopted as alternative method for Steps 5 and 8.