• Title/Summary/Keyword: chemical crosslinker

Search Result 46, Processing Time 0.023 seconds

Copolymerization of Organo Silane with Butoxyacrylamide Monomer and Its Physical Properties

  • Han, Jong Hee;Ko, Byeng In;Lee, Won-Ki;Park, Chan Young
    • Elastomers and Composites
    • /
    • v.54 no.2
    • /
    • pp.128-134
    • /
    • 2019
  • Many scientific approaches have been developed for the preparation of alternative crosslinker system of amino resins and isocyanate prepolymers. Herein, copolymerization of trimethoxy silane with N-butoxymethyl acrylamide was performed, and the product was reacted with hydroxyl groups in the alkyl main chain without the need for an additional crosslinker. For the crosslinker synthesized herein, the molecular weight, glass transition temperature, and viscosity increased with increasing content of N-butoxymethyl acrylamide.

The Transport Phenomena of a Series of Amides through the Copolymer Hydrogel Membranes

  • Koo, Hyeon-Sook;Jhon, Mu-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.1 no.4
    • /
    • pp.138-143
    • /
    • 1980
  • Hydrogel membranes were prepared by copolymerizing 2-hydroxyethyl methacrylate (HEMA) and N-vinyl-2-pyrrolidone (VP) in the presence of the solvent and the crosslinker tetraethyleneglycol dimethacrylate (TEGDMA). By changing the monomer composition and the crosslinker content, different membranes were synthesized. Using these membranes, relative permeabilities and distribution coefficients for amides including urea were measured. The water contents in membrane were also measured. On the basis of solute-membrane matrix interaction, the results were interpreted.

Characteristics of Hydrogel Prepared from Microbial Poly($\gamma$-glutamic acid) by Chemical Crosslinker

  • Park, Jong-Soo;Choi, Seong-Hyun;Choi, Woo-Young;Yoon, Min-Ho
    • Journal of Applied Biological Chemistry
    • /
    • v.48 no.4
    • /
    • pp.213-217
    • /
    • 2005
  • Microbial hydrogel was prepared with poly(${\gamma}$-glutamic acid) produced from Bacillus subtilis BS62 using crosslinking reagent, ethylene glycol diglycidyl ether (EGDE), and its physico-chemical characteristics were examined. Hydrogel which prepared from 10 grams of 10% PGA solution with $600\;{\mu}l$ of EGDE at $50^{\circ}C$ for 17 h swelled 4,320 times its dry weight, and time to reach swelling equilibrium in deionized water at 4 to $45^{\circ}C$ range was about 20 h. Swollen hydrogel shrunk in ionic solutions, and rate of shrinkage was higher in calcium chloride solution than sodium chloride solution. Swelling rate of hydrogel increased 1.3-fold of initial swelling rate for 30 min at $80^{\circ}C$.

Thermally Crosslinkable Second-Order Nonlinear Optical Polymer Using Pentaerythritol tetrakis(2-mercaptoacetate) as Crosslinker

  • 한관수;심상연;이용석;장웅상;김낙중
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.11
    • /
    • pp.1168-1171
    • /
    • 1998
  • Two kinds of second-order nonlinear optical copolymers were prepared by the copolymerization of the vinyl monomers containing NLO chromophore, methacrylic acid, and methyl methacrylate or butyl methacrylate. Glass transition temperatures (Tg of copolymers were around 130 ℃. The copolymers were soluble in common organic solvents such as tetrahydrofuran (THF), cyclohexanone, and N,N-dimethylformamide (DMF). The crosslinked copolymer was obtained by thermal treatment using pentaerythritol tetrakis(2-mercaptoacetate) as a crosslinker and became insoluble in tetrahydrofuran (THF) and N,N-dimethylformamide (DMF). Poling was carried out at 120 ℃ for 20 min and identified with UV-Vis spectroscopy. Electro-optic coefficient (r33) measurement showed a value of 35 pm/V for polymer 2 at 633 nm. Temporal stability of copolymers was improved owing to the crosslinked network, which was successfully obtained at 170 ℃ for 30 min after poling.

Preparation and Properties of $N^1,N^1,N^4,N^4$-Tetrakis(hydroxyethyl)cyclohexanetrans-1,4-dicarboxamide as a Crosslinker of Polyester Powder Coatings (폴리에스터계 분체도료용 경화제 $N^1,N^1,N^4,N^4$-Tetrakis(hydroxethyl) cyclohexane-trans-1,4-dicarboxamide의 제조 및 특성)

  • Jung, Hong-Ryun;Heo, Joon;Lee, Wan-Jin;Kim, Hyung Jin;Lim, Hyung Soo
    • Applied Chemistry for Engineering
    • /
    • v.20 no.2
    • /
    • pp.195-200
    • /
    • 2009
  • To develop a crosslinker for the polyester powder coatings, $N^1,N^1,N^4,N^4$-tetrakis(hydroxyethyl)cyclohexane-1,4-dicarboxamide (Cy-${\beta}-HAA$), incorporated with a cyclohexane ring within the main chain of commercial ${\beta}-hydroxyalkylamide$ (${\beta}-HAA$), was prepared from the amidation of dimethyl trans-1,4-cyclohexanedicarboxylate and diethanolamine in the presence of $NaOCH_3$, The structure of $Cy-{\beta}-HAA$ was confirmed by its NMR, FT-IR and ESI-MS spectra. $Cy-{\beta}-HAA$ was thermally more stable than ${\beta}-HAA$. When $Cy-{\beta}-HAA$ was used as a crosslinker for the polyester powder coatings, it provided the smooth coating surface and reduced the formation of pinholes in the coating surface with comparison with ${\beta}-HAA$.

Temperature Dependence of Self-Diffusion of THO in Copolymer Hydrogel Membrane as a Function of Gel Compositions

  • Soon Hong Yuk;Sang Il Jeon;Mu Shik Jhon
    • Bulletin of the Korean Chemical Society
    • /
    • v.5 no.3
    • /
    • pp.104-108
    • /
    • 1984
  • The self-diffusion experiment of THO was performed across a series of copolymer hydrogel membranes at different temperatures. Copolymer hydrogel membranes were prepared by copolymerizing 2-hydroxyethyl methacrylate (HEMA) and 2-aminoethyl methacrylate (AEMA) in the presence of the solvent and the crosslinker, ethylene glycol dimethacrylate (EGDMA). By changing the crosslinker content and the ratio of HEMA and AEMA monomer, two series of copolymer hydrogel membranes were synthesized. The tagging material was THO and efflux of THO was counted on a Liquid Sc-intillation Counter. The experimental data show that the permeability decreases as the amount of EGDMA and the mole fraction of HEMA increase, and the permeability is proportional to the temperature. The partition coefficient shows a parallel trend with permeability. Using the relationship between viscosity and diffusivity, the viscosity of water within the membrane was obtained. According to the result, the viscosity of watler within the membrane has the same value with those of supercooling water. And we obtained the activation energy of THO for transport in the membrane by using Arrhenius plotting.

Facile Preparation of Biodegradable Glycol Chitosan Hydrogels Using Divinyladipate as a Crosslinker

  • Kim, Beob-Soo;Yeo, Tae-Yun;Yun, Yeon-Hee;Lee, Byung-Kook;Cho, Yong-Woo;Han, Sung-Soo
    • Macromolecular Research
    • /
    • v.17 no.10
    • /
    • pp.734-738
    • /
    • 2009
  • Biodegradable, pH-sensitive, glycol chitosan (GC) hydrogels were prepared using divinyl adipate (DVA) as a crosslinker and acetic acid as a catalyst. DVA has highly reactive double vinyl ester groups and GC contains a high density of hydroxyl groups, with two in every glucosamine unit. The transesterification reaction between vinyl esters and hydroxyl groups produced crosslinked GC hydrogels. The initial crosslinking reaction was monitored by measuring the viscosity of the reaction mixture. When DVA was added to the GC solution and heated to $50^{\circ}C$, the viscosity of the GC solution gradually increased, implying a crosslinking reaction and hydrogel formation. A new peak from the ester group was observed in the FTIR spectra of the GC hydrogels, confirming the crosslinking reaction. The synthesized GC hydrogel showed pH-dependent water absorbency, mainly due to the presence of amine groups ($-NH_2$) at the C-2 position of the glucosamine unit of GC. The water absorbency greatly increased at acidic pH and slightly decreased at alkaline pH. The GC hydrogel gradually degraded in $37^{\circ}C$ water due to hydrolysis of the ester bonds, which were intermolecular crosslinking sites. A red dye, 5-carboxyltetramethyl-rhodamine (CTMR), was entrapped in the GC hydrogels as a model compound. CTMR was released from GC hydrogels in two steps: an initial burst release mainly due to desorption and diffusion, and a second sustained release possibly due to gradual degradation.

Preparation and Adhesion of One Part Room Temperature Curable Alkoxy Type Silicone Sealant (일액형 알코올형 실리콘 실란트의 제조 및 접착 물성)

  • Kim, Dae-Jun;Park, Young-Jun;Kim, Hyun-Joong;Lee, Bong Woo;Han, Jae Chul
    • Journal of Adhesion and Interface
    • /
    • v.2 no.4
    • /
    • pp.1-9
    • /
    • 2001
  • Silicone sealants are composed of polymer, plasticizer, crosslinker, catalyst and filler. Types and compositions of components are effected on sealant performances. In recent, use of alkoxy type silicone sealant increased due to environmental advantage. In this study, we investigated effects of component types and ratios on one-part room temperature curable alkoxy type silicone sealant preparation and adhesion properties. Alkoxy type silicone sealants were prepared with various PDMS (polydimethylsiloxane) viscosities. In addition, the effect of plasticizer, crosslinkers, and catalyst on sealant obtained from by mixture of PDMS viscosities of 20000 and 80000 was investigated. Reaction temperature on change of mixing time was observed, and then proper crosslinking systems were found. Adhesion (properties) of silicone sealants were measured. In the sealants preparation, stable reaction was achieved by adjusting composition variance ratio in the sealant mixture temperature below $40^{\circ}C$. The adhesion properties of sealant differ from substrate composition. The order of adhesion strength was glass/glass > glass/aluminum > aluminum/aluminum system. The elongation of sealant was increased as polymer viscosity and plasticizer content increased. The strength was increased as crosslinker and plasticizer decreased, while catalyst increased.

  • PDF

The Effect of Crosslinker Type on Adhesion Properties of Transparent Acrylic Pressure Sensitive Adhesives for Optical Applications (가교제 변화에 따른 광학용 아크릴 점착제의 점착물성에 대한 연구)

  • Baek, Seung-Suk;Jang, Se-Jung;Hwang, Seok-Ho
    • Elastomers and Composites
    • /
    • v.49 no.3
    • /
    • pp.199-203
    • /
    • 2014
  • Terpolymer syrups were photopolymerized from 2-ethylhexyl acrylate, 2-hydroxylethyl acrylate and isobornyl acrylate to prepare acrylic pressure sensitive adhesives (PSAs). After polymerization, various crosslinkers as 1,6-hexanediol diacrylate (HDDA), poly (ethylene glycol) diacrylate (PEGDA, Mn = 250, 575, and 700) were added and then UV-irradiated to prepare the semi-IPN type PSAs. Their adhesion performance and storage modulus (G') were strongly dependent on their chemical structure and molecular weight of the crosslinkers. Optical properties such as transmittance (> 92.5 %), haze (< 1.0 %) and color-difference (< 0.3) of PSAs samples were not affected by crosslinker types used in this study.

Effect of polymer concentration in cryogelation of gelatin and poly (vinyl alcohol) scaffolds

  • Ceylan, Seda;Demir, Didem;Gul, Gulsah;Bolgen, Nimet
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • The aim of this study was to investigate the effect of total polymer concentration on the chemical structure, morphology of pores, porosity, swelling ratio, degradation of gelatin-poly (vinyl alcohol) (Gel-PVA) cryogel scaffolds. Porous cryogels were prepared with cryogelation technique by using glutaraldehyde as a crosslinker. Functional group composition of cryogels after crosslinking was investigated by Fourier Transform Infrared (FTIR). The morphology of cryogels was characterized via scanning electron microscopy (SEM) and porosity analysis. All of the cryogels had a porous structure with an average pore size between $45.58{\pm}14.28$ and $50.14{\pm}4.26{\mu}m$. The cryogels were biodegradable and started to degrade in 14 days. As the polymer concentration increased the swelling ratio, the porosity and the degradation rate decreased. Spongy and mechanically stable Gel-PVA cryogels, with tunable properties, can be potential candidates as scaffolds for tissue engineering applications.