• Title/Summary/Keyword: chemical composition, mineral

Search Result 540, Processing Time 0.03 seconds

EFFECT OF ENGINE OIL ON EXHAUST EMISSIONS

  • Maxa, D.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.423-424
    • /
    • 2002
  • Amount of regulated emissions (CO, $NO_x$, HC), and emissions of some groups of organic substances (volatile hydrocarbons, polyaromatics, and aldehydes) were measured in the standard ECE 83 test on spark ignition engine of a passenger car. The influence of the engine oil composition (mineral or fully synthetic) was examined. For both engine oils, exhaust emissions were measured with fresh oil as well as used oil at the end of the oil drain interval. Unleaded petrol and CNG were used as fuels in all experiments performed. The main conclusion made from the tests is that polyaromatics is the only part of th ε exhaust emissions that was influenced with the nature of the engine oil. Effect on the other components of emissions (aldehydes and VOC) was negligible. Emissions of polyaromatics were almost twice higher for fresh mineral as for fresh fully synthetic oil. The amount of polyaromatics in the exhaust emissions increased slightly with mileage for fully synthetic and substantially more for mineral engine oil.

  • PDF

Oyster Shell waste is alternative sources for Calcium carbonate (CaCO3) instead of Natural limestone

  • Ramakrishna, Chilakala;Thenepalli, Thriveni;Nam, Seong Young;Kim, Chunsik;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.27 no.1
    • /
    • pp.59-64
    • /
    • 2018
  • In this paper, we investigated the alternative sources of limestone. Oyster shell waste originated from aquaculture that causes a major disposal landfill problem in coastal sectors in southeast Korea. Their inadequate disposal causes a significant environmental problems araised. Bio mineralization leads to the formation of oyster shells and consists $CaCO_3$ as a major phase with a small amount of organic matter. It is a good alternative material source instead of natural lime stone. The utilization of oyster shell waste for industrial applications instead of natural limestone is major advantage for conservation of natural limestone. The present work describes the limestone and oyster shells hydraulic activity and chemical composition and characteristics are most similar for utilization of oyster shell waste instead of natural limestone.

Studies on the Phosphatic fertilizer Application Grassland I. Recidual effect of phosphatic fertilizer botanical composition and mineral contents of pasture plants in mixed sward (초지에 대한 인산질비료의 잔류효과에 의한 연구 II. 혼파초지의 식생구성 및 목초의 무기태함량에 대한 인산질비료의 잔류효과)

  • Park, Geun-Je;Kim, Jeong-Gap;Seo, Sung;Kim, Meing-Jooung
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.17 no.1
    • /
    • pp.19-26
    • /
    • 1997
  • To find out the residual effect of phosphate fertilization on botanical composition, mineral contents and mineral nutrient deprivation of pasture plants, this experiment was arranged as a randomized complete block design with six treatments(0-0, 50-50, 100-65, 150-65, 200-65 and 250-65kg $P_2O_5$/ha), those were composed of three P,O, fertilization level(0, 50 and 65kg P,OJha) after phosphate fertilization trial with six treatments(0, 50, 100, 150, 200 and 250kg $P_2O_5$/ha) from 1989 to 1992, and conducted at hilly land in Kwangju, Kyonggi Province 60m 1993 to 1994. The results obtained are summarized as follows: The botanical composition of pasture plants without phosphate fertilization was very poor. With increasing available phosphate of soil, the percentage of grasses and legumes were remarkably increased and weeds was decreased. With 150-65kg $P_2O_5$/ha application for two years, the average DM yield was composed of 80.6% grasses, 15.4% legume and 4.0% weeds, the percentage was similar to that of 200-65kg $P_2O_5$/ha. As available phosphate of soil increase, P, K and Mg content of pasture plants were increased, but Ca/P ratio was lowed and the other mineral contents tended not to be regular. The mineral nutrient contents deprived by DM yield was increased as available phosphate of soil was increased, but those were not different between 150-65 and 250-65kg $P_2O_5$/ha. However, mineral nutrient of $P_2O_5$,$K_2O$ and MgO were higher in 200-65 and 250-65kg $P_2O_5$/ha. Most of applied mineral elements were accumulated at a subsurface(0-2.5cm) of grasslands, and mineral tended to be decrease than that of soil chemical analysis before the experiment of residual effect of phosphate fertilization.

  • PDF

Mineral Chemistry and Thermo-chemical Characterization of Wellsite, a Barrian Zeolite, from the Tertiary Formation in Gampo Area (감포 지역의 제3기 층에서 산출되는 Ba-제올라이트인 웰자이트의 광물화학 및 열화학적 특성)

  • 노진환;김기업
    • Journal of the Mineralogical Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.105-113
    • /
    • 1997
  • Mineral description and mineralogical characterization were made for the wellsite, a barrian zeolite, which found as diagenetic alterations in the Miocene pyroclastic rocks in Gampo area. The wellsite occurs together with clinoptilolite, smectite and apatite as euhedral crystallites (0.2~0.4mm) forming interpenetraion twinning in the vesicles of altered pmice fragments. Compared to other reported wellsites, the wellsite is rather silicic (Si/(Al+Fe): 3.12-3.16) and Ca-rich. Unit cell dimensions and chemical formular determined from XRD, EMPA and TGA data are as follows:a=9.883$\AA$, b=14.204$\AA$, c=8.677$\AA$, $\beta$-124.764$^{\circ}$, (Ba0.57K0.36)(Ca1.18Na0.04)Al3.9Si12.1O32.13.9H2O.The cation composition of the Gampo wellsite, which shows an exchange reaction in the form of Ba2++Ca2+=2(K++Na-), is deviated far from the compositional range of a phillipsite-harmotome series. Due to higher abundance of divalent cations (Ca, Ba) and si in the wellsite, cimpared to those of the phillipsite and harmotome reported in other areas, the zeolite seems to be characteristic of higher water content (18.7 wt%) and higher thermal stability. XRD, chemical and thermo-chemical results of the wellsite reflects that wellsite is rather a Ba- and Ca-rich end member of a phillipsite-harmotome-wellsite series than an intermediate phase of phillipsite-harmotome series or a barrian variety of phillipste.

  • PDF

Mineralogy and Chemical Composition of the Residual Soils (Hwangto) from South Korea (우리 나라 황토(풍화토)의 구성광물 및 화학성분)

  • 황진연;장명익;김준식;조원모;안병석;강수원
    • Journal of the Mineralogical Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.147-163
    • /
    • 2000
  • The mineralogy and chemical composition of reddish to brownish yellow residual soils, so called "Hwangto" have been examined according to representative host rocks. The result of the study indicates that Hwangto consists of 40-80% clay minerals and various minerals such as quartz, feldspar, hornblende, goethite, and gibbsite. Clay minerals include kaolinite, halloysite, illite, hydroxy interlayered vermiculite (HIV), mica/vermiculite interstratifield mineral and chlorite. The mineralogical constituents and contents of Hwangto were different depending on the types of host rocks. Moreover, the Jurassic granitic rocks contain relatively more kaolin minerals, whereas the Cretaceous granitic rocks contain more HIV and illite. In addition, reddish Hwangto contains relatively more kaolinite and HIV, and yellowish Hwangto contains more illite and halloysite. It is suggested that feldspars and micas of host rocks were chemically weathered into illite, halloysite, illite/vermiculite interstratified minerals, and HIV, and finally into kaolinite. Compared with their host rocks, the major chemical compositions of Hwangto tend to contain more $Al_2O_3,\;Fe_2O_3,\;H_2O$ in amount and less Ca, Mg, and Na. Hwangto contains relatively high amount of trace elements, P, S, Zr, Sr, Ba, Rb, and Ce including considerable amount of Li, V, Cr, Zn, Co, Ni, Cu, Y, Nb, La, Nd, Pb, Th in excess of 10 ppm. Relatively high amount of most trace elements were detected in the Hwangto. The major and minor chemical compositions of the Hwangto were different depending on the types of host rocks. However, their difference was in the similar range compared with the compositions of host rocks.

  • PDF

Mineral Paragenesis and Chemical Composition of Sangeun Au-Ag Ore Vein, Korea (상은광산(常隱鑛山)의 Au-Ag 광맥(鑛脈)의 광물(鑛物) 공생(共生) 및 화학조성(化學組成))

  • Kim, Moon Young;Shin, Hong Ja;Kim, Jong Hwan
    • Economic and Environmental Geology
    • /
    • v.24 no.4
    • /
    • pp.347-361
    • /
    • 1991
  • The Sangeun ore deposit is located in a volcanic belt within the Gyeongsang Basin in south western Korea. The ore deposit is of representative epithermal Au-Ag quartz vein type developed in lapilli tuff. This paper presents the mineralization with special emphasis on mineral zoning of the deposits. Principal points are summarized as follows: (1) Four stages of mineralization are recognized based on macrostructures. From ealier to later they are stage I(arsenopyrite-pyrite-quartz), stage II(Au-Ag bearing Pb-Zn-quartz), stage III(barren quartz), and stage IV(dickite-quartz). (2) Electrum principally occurs with arsenopyrite and galena in stage II, and has chemical compositions of 72.9-67.1 Ag atom %, and has Ag/Au ratio of 2.69-2.04. (3) Sphalerite varies in its FeS content according to the mineralization stages; 22.03-18.60 mole % FeS and 1.33-0.23 mole % MnS in stage IB, 16.11-8.64 mole % FeS and 1.33-0.23 mole % MnS in stage II. (4) Alteration zones of mineral assemblage, from the vein to the wall-rock, consist of sericite - quartz - pyrite, sericite - quartz - dickite, sericite - chlorite plagioclase respectively.

  • PDF

Clay Mineral Composition of the Soils Derived from Residuum and Colluvium (잔적 및 붕적모재 토양의 점토광물 특성구명)

  • Zhang, Yong-Seon;Sonn, Yeon-Kyu;Jung, Sug-Jae;Lee, Gye-Jun;Kim, Myung-Sook;Kim, Sun-Kwan;Lee, Ju-Young;Pyun, In-Hwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.5
    • /
    • pp.245-252
    • /
    • 2006
  • This experiment was conducted to investigate the distribution and compositions of clay mineral and to replenish the soil classification system in Korea. Soil layer samples were collected from 26 residuum and colluvium soil series out of 390 soil series in Korea, and then analyzed for soil physical and chemical characteristics, mineral and chemical compositions of clay in B horizon soils. Major clay minerals of residuum and colluvium were illite and chlorite in soils originated from the sedimentary rock such as limestone, shale, sandstone and conglomerate; quartz and kaolin in soils originated from rhyolite, neogene deposits, porphyry and tuff; and kaolin and quartz in the soils originated from granite, granite gneiss and anorthosite. Clay minerals in Korean soils were divided into 4 groups: mixed mineral group(MIX) mainly contained with illite, kaolin and vemiculite; kaolin group(KA) with kaolin and illite; chlorite group(CH) with chlorite and illite; and smectite group(SM) with kaolin, illite and smectite. The most predominant clay mineral group was kaolin group(KA) with kaolin and illite; an mixed mineral group(MIX) with illite, kaolin and vemiculite. Cation exchange capacity (CEC) of clay was low in the soils mainly composed with MIX and KA groups and silica-alumina molar ratio of clay was high in the soils composed with SM group

Sulfate Attack According to the Quantity of Composition of Cement and Mineral Admixtures (시멘트 화학성분(C3A)과 무기 혼화재에 따른 황산염 침투 특성)

  • Ahn, Nam-Shik;Lee, Jae-Hong;Lee, Young-Hak
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.6
    • /
    • pp.547-556
    • /
    • 2011
  • The primary factors affecting concrete sulfate resistance are the chemical composition of the Portland cement, and the chemistry and quantity of mineral admixtures. To investigate the effect of those on the sulfate attack, the testing program involved several different mortar mixes using the standardized test, ASTM C1012. Four different cements were evaluated, including one Type I cement, two Type I-II cements, and one Type V cement. Mortar mixes were also made with mineral admixtures, as each cement was combined with three different types of mineral admixtures. One Class F fly ash, one Class C fly ash, and one ground granulated blast furnace slag (GGBFS) were added in various percent volumetric replacement levels. Expansion measurements were taken and investigated with the expansion criteria recommended by ASTM.

Basic Study for the Recycling of Phosphogypsum (인산부생석고(燐酸副生石膏)의 재활용(再活用)을 위한 기초연구(基礎硏究))

  • Park, Woon-Kyoung;Song, Young-Jun;Lee, Jung-Mi;Lee, Gye-Seung;Kim, Youn-Che;Shin, Kang-Ho;Yoon, Sin-Ae;Park, Charn-Hoon
    • Resources Recycling
    • /
    • v.15 no.2 s.70
    • /
    • pp.58-68
    • /
    • 2006
  • This study is carried out for the purpose of investigating the property of phosphogypsum, and suggesting the proper recycling system for it. The chemical composition, mineralogical composition, particle size distribution and shape of phosphogypsum were investigated. The size distribution and constitution of impurities, distribution of heavy metals are also investigated. In conclusion, the grade and yield of recoverable phosphogypsum were discussed.

Geochemical Characteristics of Allanite from Rare Metal Deposits in the Chungju Area, Chungcheongbuk-Do (Province), Korea (충주지역 희유원소광상에서 산출되는 갈렴석의 지구화학적특성)

  • Park, Maeng-Eon;Kim, Gun-Soo;Choi, In-Sik
    • Economic and Environmental Geology
    • /
    • v.29 no.5
    • /
    • pp.545-559
    • /
    • 1996
  • Rare metal (Nb-Zr-REE) ore deposits are located in the Chungju area. Geotectonically, the rare metal ore deposits are situated in the transitional zone between Kyeonggi massif and Okcheon belt. The rare metal deposits are distributed in Kyemyeongsan Formation which consist of schist and alkaline igneous rocks. Alkali granite has suffered extensive post-magmatic metasomatism and hydrothermal processes. The ore contains mainly Ce-La, Ta-Nb, Y, Y-Nd, Nd-Th group minerals. More than 15 RE and REE minerals are found in the ore deposits. Allanite, one of the Ce-La rich REE minerals belonging to the epidote group, is the most common mineral in the studied area. The allanite- bearing rocks may be devided into seven types by features of occurrence and mineral associations; zircon type (ZT), allanite-vein type (AT), feldspar type (KT), fluorite type (FT), quartz-mica type (QT), iron-oxide type (MT), and amphibole type (HT). The allanite veins (AT) and zircon rich rocks (ZT) contain the highest total REE contents. Differences in REE abundance can be interpreted in terms of varying portions of magmatic hydrothermal fluid. Petrographical and chemical data are presented for allanites which were collected from different types. The allanites show wide variations in optical properties, due in part to differences in their chemical composition (depending on the types) and to the degree of crystallinity of the individual specimens. Allanite metamicts in biotite are generally surrounded by well developed pleochroic haloes. Usually, allanite is accompanied by zircon and other REE-bearing minerals. CaO and total REE contents $({\sum}RE_2O_3)$ range from 9.29 to 18.79% and 11.66 to 26.31%, respectively. Also, SiO, (28.87~32.61%), $Al_2O_3$ (8.30~16.88%), and $Fc_2O_3$ (16.74~24.38%) contents show varying contents from type to type. The ${\sum}RE_2O_3$ of allanite has positive relationships with $Fe_2O_3$ and negative relaton with CaO, $SiO_2$, and $Al_2O_3$ Backscattered electron microscope images (BEl) of allanite shows that the its mineral composition and texture is very complex. The allanite-bearing hosts show distinct light REE enrichment with strong negative Eu anomaly except for HI. The HT has an almost flat REE distribution pattern with a small negative Eu anomaly. The chemical variation of the allanites with occurrences and mineral association can be related to condition of temperature and oxidation states in precipitation environment.

  • PDF