• Title/Summary/Keyword: chemical components of plant and soil

Search Result 85, Processing Time 0.027 seconds

The Effects of Drought Stress on Inorganic Compound and Growth of Potato Plant (건조스트레스가 감자 식물체 무기성분 및 생육에 미치는 영향)

  • Bak, Gyeryeong;Lee, Gyejun;Cho, Jihong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.62 no.3
    • /
    • pp.241-248
    • /
    • 2017
  • Yield of potato is largely influenced by drought stress. This study was conducted in Gangneung and Cheongju during the spring cropping of potato. Potatoes in the Gangneung area were affected by drought but there was no damage due to drought in Cheongju. During the early-growth stage, the contents of inorganic components like available phosphate and growth characteristics of the potato leaf in Cheongju were significantly higher than those in Gangneung but there was no difference after the flowering stage. It was considered that the potato plants cultivated in Cheongju could vigorously grow than that of Gangneung under drought stress. In addition, the content of calcium (Ca), which is a secondary messenger related to aging, was found to be higher in potato plants grown in Cheongju than in Gangneung and accumulated more quickly in potato plants of Cheongju. Because magnesium (Mg) was also found to be higher in potato plants from Gangneung by a wide margin, this phenomenon was thought be related with drought stress. The amounts of all inorganic components absorbed from soil were higher in Cheongju than in Gangneung, showing a relatively higher plant biomass in Cheongju. Correlations of development indexes related to leaf showed less or no relation in Gangneung. According to yield characteristics of the harvest stage, although yield was greatly reduced under drought stress condition, the rate of commercial yield was not significantly affected under the drought stress condition. Consequently, it was considered that these responses to drought stress could be utilized to stabilize potato production under the stressful conditions associated with abnormal climate.

Comparison of Application Effects among Three Products of Granular Fused Magnesium Phosphate on Soybean Cultivation (대두(大豆)에 대한 입상(粒狀), 용성인비(熔成燐肥) 제품간(製品間)의 비효(肥效) 비교(比較))

  • Lim, Dong-Kyu;Kim, Seok-Cheol;Song, In-Kwan;Moon, Jae-Hyon;Choi, Du-Hoi;Kang, Hang-Won;Jung, Yeun-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.3
    • /
    • pp.255-263
    • /
    • 1996
  • This study was conducted to evaluate the application effects of three different granular fused magnesium phosphate products on soybean in a volcanic ash upland soil(Namweon series) of Cheju island. They were two domestic products(Kyunggi Chemical Industrial Co., LTD, Pungnong Biryo Industrial Co., LTD) and an imported Chinese product that were manufactured from different added materials. A powder fused magnesium phosphate. a single superphosphate(water soluble phosphatic fertilizer) and a fused superphosphate(mixed water soluble phosphate and 2% citric acid soluble phosphate) were presented as check fertilizers. Yield of soybean was the highest in the Pungnong product of granular fused magnesium phosphate. the next was the Chinese product imported and the Kyunggi product was the lowest but there was no statistical significance among the three granular products of fused magnesium phosphate. There was no clear tendency between yield and yield components of soybean plant however, the effects on the number of mainstem nodes, number of branches nodes and number of pods per plant were observed in the increased yield treaments. Phosphate concentration in stems and pods of soybean plant at harvesting stage was higher than those in stems of soybean plant during growing period. Uptake amounts and recovery rates of phosphate in stems and pods of soybean plant at harvesting stage were similar with the yield increasing tendency on soybean. In the changes of soil pH at different periods, the application of phosphatic fertilizers was increased soil pH. Soil pH in Chinese product was higher than domestic products, but it was similar to single superphosphate. The available silicate concentrations of soil were higher in the plot of Pungnong product than Chinese product.

  • PDF

Effect of Continuous use of Inorganic Fertilizer on the Soil Organisms and Food Chain (무기질비료의 장기연용이 토양생물 및 먹이연쇄에 미치는 영향)

  • Eo, Jinu;Park, Kee-Choon;Park, Jin-Myeon;Kim, Myung-Hyun;Choi, Soon-Kun;Bang, Hea-Seon
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.1
    • /
    • pp.39-45
    • /
    • 2016
  • BACKGROUND: This study aimed to evaluate the combined effects of three components (NPK) of chemical fertilizers with basal application of compost on soil organisms.METHODS AND RESULTS: The soil was treated with five treatments continuously for 15 years: control, PK, NK, NP and NPK. The application of N increased plant growth or biomass, and enhanced organic matter content in the soils. Levels of microbial phospholipid fatty acids (PLFAs) in the soils did not show marked differences among the soils treated with different treatments. However, the principal component analysis showed the changes in the structure of the microbial community in the soil, depending on treatments added. Nitrogen application caused a decrease of pH and an increase of EC in the soils, and these environmental stresses appeared to offset the promoting effect of increased organic matter content on microbial abundance. The abundance of bacterivorous nematodes was the highest in the soils after treating NPK; however, the abundance of fungivorous nematodes was unaffected. There was no significant correlation between the abundances of microbial groups and their feeders. Organic matter content was significantly correlated with the abundance of nematodes in the soils.CONCLUSION: Our results showed that chemical fertilizers affect the soil food chains through both biotic and abiotic factors, and a trophic cascade in the soils may not occur in response to long-term fertilization.

Growth and yield components of rice under different NPK rates in Prateah Lang soil type in Cambodia

  • Kea, Kong;Sarom, Men;Vang, Seng;Kato, Yoichiro;Yamauchi, Akira;Ehara, Hiroshi
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.361-361
    • /
    • 2017
  • The NPK are known as macro elements that affect crop growth and yield. In 1989, Cambodia Agricultural Research and Development Institute (CARDI) gave a recommendation rate of fertilizer on rice production based on soil types. This recommended rate of NPK seems however relatively low as compared to farmers' practices nowadays and the amount in the neighboring countries. The CARDI recommended rate for Prateah Lang soil type is 50kg N, $25kg\;P_2O_5$, $25kg\;K_2O\;ha^{-1}$ while recent farmers' practice rates are 55 - 64kg N, 24 - 46kg $P_2O_5$, $30kg\;K_2O\;ha^{-1}$. However, the overuse of chemical fertilizer will lead to un-preferable plant growth, insect pest, disease and economic yield. Thus, we examined the effect of different NPK application rates on the growth and yield components in Prateah Lang soil type in Takeo province to investigate appropriate rates for improving rice productivity with economic efficiency. This study was conducted from July to November during wet season in 2013. A multi-locational trial with 6 treatments (T0 - T5) of NPK rates in 5 locations (trial 1 - 5) with 3 replications was conducted. The different combinations of NPK application were employed from 0, 50, 60, 80, 100, $120kg\;N\;ha^{-1}$, 0, 25, 30 45, $60kg\;P_2O_5\;ha^{-1}$ and 0, 15, 25, 30, $45kg\;K_2O\;ha^{-1}$. Urea, DAP and KCl were used for fertilization. Split application was employed [basal: 20% of N, 100% of P and K, top dressing-1st: 40% of N (30DAT), 2nd: 40% of N (PI stage)]. Three-week-old seedlings of var. Phka Rumdoul were transplanted with 2 - 3 seedlings $hill^{-1}$ with $20cm{\times}20cm$ spacing. Plant length, tiller number at the maximum tillering stage and yield components were measured. The different rates of NPK application affected some yield components. The panicle number per hill was the most important key component followed by the spikelet number per panicle. However, the other parameters such as the filled grain percentage and 1000 grains weight had small effect or weak relation with the yield. Although the panicle number per hill had a significantly positive correlation with the stem number per hill, it was not correlated with the percentage of productive culms. The variation in the grain yield among the 5 trials was small and the difference was not significant. Although the yield tended to be higher at higher N and P application, there was no significant difference above 60kg N and $30kg\;P_2O_5$. The yield was the highest at 15, 30 and $45kg\;K_2O$ followed by $25kg\;K_2O$. The relationships between N, P and the stem number per hill were significantly linear positive, though it was not linear between K and the stem number. From these results, to increase rice productivity in the target area, farmers' effort to increase N and P input rather than CARDI recommendation up to 60kg N and $30kg\;P_2O_5$ will be sufficient considering economic efficiency. Besides, the amount of K application should be reconsidered.

  • PDF

Growth and yield components of rice under different NPK rates in prateah lang soil type in cambodia

  • Kea, Kong;Sarom, Men;Vang, Seng;Kato, Yoichiro;Yamauchi, Akira;Ehara, Hiroshi
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.363-363
    • /
    • 2017
  • The NPK are known as macro elements that affect crop growth and yield. In 1989, Cambodia Agricultural Research and Development Institute (CARDI) gave a recommendation rate of fertilizer on rice production based on soil types. This recommended rate of NPK seems however relatively low as compared to farmers' practices nowadays and the amount in the neighboring countries. The CARDI recommended rate for Prateah Lang soil type is 50kg N, 25kg P2O5, 25kg K2O ha-1 while recent farmers' practice rates are 55 - 64kg N, 24 - 46kg P2O5, 30kg K2O ha-1. However, the overuse of chemical fertilizer will lead to un-preferable plant growth, insect pest, disease and economic yield. Thus, we examined the effect of different NPK application rates on the growth and yield components in Prateah Lang soil type in Takeo province to investigate appropriate rates for improving rice productivity with economic efficiency. This study was conducted from July to November during wet season in 2013. A multi-locational trial with 6 treatments (T0 - T5) of NPK rates in 5 locations (trial 1 - 5) with 3 replications was conducted. The different combinations of NPK application were employed from 0, 50, 60, 80, 100, 120kg N ha-1, 0, 25, 30 45, 60kg P2O5 ha-1 and 0, 15, 25, 30, 45kg K2O ha-1. Urea, DAP and KCl were used for fertilization. Split application was employed [basal: 20% of N, 100% of P and K, top dressing-1st: 40% of N (30DAT), 2nd: 40% of N (PI stage)]. Three-week-old seedlings of var. Phka Rumdoul were transplanted with 2 - 3 seedlings hill-1 with $20cm{\times}20cm$ spacing. Plant length, tiller number at the maximum tillering stage and yield components were measured. The different rates of NPK application affected some yield components. The panicle number per hill was the most important key component followed by the spikelet number per panicle. However, the other parameters such as the filled grain percentage and 1000 grains weight had small effect or weak relation with the yield. Although the panicle number per hill had a significantly positive correlation with the stem number per hill, it was not correlated with the percentage of productive culms. The variation in the grain yield among the 5 trials was small and the difference was not significant. Although the yield tended to be higher at higher N and P application, there was no significant difference above 60kg N and 30kg P2O5. The yield was the highest at 15, 30 and 45kg K2O followed by 25kg K2O. The relationships between N, P and the stem number per hill were significantly linear positive, though it was not linear between K and the stem number. From these results, to increase rice productivity in the target area, farmers' effort to increase N and P input rather than CARDI recommendation up to 60kg N and 30kg P2O5 will be sufficient considering economic efficiency. Besides, the amount of K application should be reconsidered.

  • PDF

Effect of Fly ash Application on the Yield of Rice and Silicate Availability in Paddy Soil (Fly ash 시용(施用)이 수도(水稻)의 수량(收量)과 논 토양(土壤)의 유효규산(有效珪酸) 함량(含量)에 미치는 영향(影響))

  • Kim, Yong-Woong;Yun, Chong-Hee;Kim, Kwang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.27 no.4
    • /
    • pp.275-283
    • /
    • 1994
  • The effects of anthracite and bituminous fly ash application on rice yield were investigated and the available silicate in paddy soil with ash application was analyzed. The obtained results are as follow : The yield of rice gradually decreased as the amount of anthracite ash increased. On the contrary, the rice yield gradually increased as the amount of bituminous ash increased. At harvesting stage the chemical properties in soil such as pH, organic content, and inorganic content($P_2O_5$, K. Ca, Mg and available $SiO_2$) were higher in bituminous ash treated soil than in anthracite treated soil. The amount of inorganic components in rice plant such as T-N, $P_2O_5$, $K_2O$, CaO, and MgO gradually decreased with the growing stage of rice. However, the amount of available silicate increased with the growing stage of rice. The silicate content in soil was determined by two different methods ; 1N-NaOAc extracted method and submerging setting method. In bituminous ash treated soil, the correlation between the silicate content in plant and in soil was found when the silicate content in soil was determined by the soil submerging method. In anthracite ash treated soil, however no correlation was found between the silicate content in plant and in soil determined by either method.

  • PDF

Studies on the Acid Sulphate Soils - Effect of the Rice Plant Growth by Amounts of Lime Application on No-Percolation and Percolation - (산성(酸性) 유산염(硫酸鹽) 토양(土壤)에 관(關)한 연구(硏究) - 투수(透水)에 의(依)한 석회(石灰) 시용량(施用量)이 수도생육(水稻生育)에 미치는 영향(影響) -)

  • Ha, H.S.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.3 no.1
    • /
    • pp.29-34
    • /
    • 1970
  • This experiment was conducted to investigate the influence of amounts of lime dressed on the growth of rice by the treatment of percolation and nonpercolation in the acid sulphate soil. And also analysis of soil chemical components after treatment was carried out. The results obtained were summarized as follows: 1. In the initial stage of growth, number of tillers and plant length showed no distinct differences between the treatments of percolation and nonpercolation, but after August the effect of lime appeared and the percolation treatment was more effective than the nonpercolation. 2. Lime dressing affected good influence on the panicles, grain per panicles and the rate of grain formation, and the treatment of percolation showed better results than nonpercolation. 3. If the yield of rough rice in the control (nonpercolation and lime dressing) was 100, it was 194 in the treatment of nonpercolation 12me/100gr of lime dressed, 268 in the treatment of percolation-4me/100gr of lime and 315 in the 8me/100gr-percolation. 4. Lime dressing affected good influence on the control of Helminthosporium leaf spots. 5. In the case of lime dressing, amounts of available phosphate and soluble silicon dioxide were increased, but ferrous ion ($Fe^{{+}{+}}$) were decreased.

  • PDF

Optimum Transplanting Time of Ostericum koreanum Kitakawa (강활 노두의 정식적기)

  • Hur, Bong-Koo;Sim, Yong-Goo;Kim, Young-Hyo;Kim, Soo-Yong;Choi, Kyong-Bai
    • Korean Journal of Medicinal Crop Science
    • /
    • v.14 no.1
    • /
    • pp.41-44
    • /
    • 2006
  • This study was conducted to investigate the optimum transplanting time of Ostericum koreanum Kit. cultivating under root apex propagation. Transplanting time per 10 days were from March 20th to May 1st. The results are follows : Soil chemical properties before experiment were well adapted upland including moderate fertility. Average temperatures during cropping seasons except March late were lower than normal years, but rainfall was abundant than that of normal years. The ratios of emergence and bolting were higher in the faster transplanting time. And also plant height, stem length and number of stem were well. Yield components of transplanted April 1st were well, and yield was 251 kg/10a. The yield was increased by 13% than that of March 20th. So optimum transplanting time is considered about April 1st.

Effects of Nitrogen Fertilization on Growth Characteristics and Grain Yield of Job's Tears (율무에 대한 질소시비가 생육 및 수량에 미치는 영향)

  • Kang, Chi-Hun;Yook, Wan-Bang;Kim, Doo-Hwan;Yun, Jang-Gun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.5
    • /
    • pp.340-346
    • /
    • 2000
  • This experiment was conducted to investigate the effect of nitrogen fertilization in job's tears (Coix lachryma-jobi L.) on the growth characteristics, grain yield, nitrogen accumulation, and chemical property of soil after harvest. Heading and budding stages were shorter than control but growth periods was increased because of the increase of ripening periods according to the increase of nitrogen fertilizer applications. Number of main culm node and culm diameter was similar but culm length and tiller number per plant were better according to the increment of nitrogen fertilizer applications than control but the decrease of grain yield was attributed to the fact that damage by corn borer was 30% in $240kg\;ha^{-1}$ of nitrogen treatment. Some of yield components was better according to the increment of nitrogen fertilizer applications but grain number per plant of $160kg\;ha^{-1}$ of nitrogen treatment was greater. So grain yield was the highest ($3,410kg\;ha^{-1}$) at the $160kg\;ha^{-1}$ of nitrogen fertilization. Nitrogen use efficiency decreased according to the increase of nitrogen fertilization. Total nitrogen of soil after experiment in 0, $80kg\;ha^{-1}$ of nitrogen treatments was lower and in 160, $240kg\;ha^{-1}$ of nitrogen treatments was higher than that before the experiment.

  • PDF

Comparison of Growth Characteristics and Compounds of Ginseng Cultivated by Paddy and Upland Cultivation (논 . 밭재배에 따른 인삼의 생육 및 성분 특성 비교)

  • Lee, Sung-Woo;Kang, Seung-Won;Kim, Do-Yong;Seong, Nak-Sul;Park, Hee-Woon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.12 no.1
    • /
    • pp.10-16
    • /
    • 2004
  • This study was carried out to investigate the difference of growth characteristics and the content of root chemical components in four years old ginseng by paddy and upland cultivation at farmers' field in Korea. Proportions of silt, clay, liquid phase and porosity were higher in paddy soil than upland soil. The range of liquid phase was $17.5{\sim}19.5%$ in paddy and $7.0{\sim}12.8%$ in upland during growth period. EC and the other contents of OM, $NO_3^-,\;K_2O$, and Mg in paddy soil were higher than those of upland soil, while the contents of $P_2O_5$ and Ca were less than those of upland soil. The levels of chemical components of tested soil exceeded recommended range in EC, $NO_3^-$ and Ca of paddy soil, and in $P_2O_5$ and Ca of upland soil. Stem length, fresh root weight and total dry weight per plant in paddy were greater than those of upland. Root weight in paddy-ginseng showed a great increase on September, while it was not increased in upland because of early defoliation. Net assimilation rate and crop growth rate by paddy and upland cultivation showed distinct differences on May and September, and those of paddy-ginseng were higher than those of upland-ginseng. Yield and ratio of red-colored root showed no significant difference by paddy and upland cultivation, while significant differences were observed in diameter and length of primary root, contents of crude saponin and 50% ethanol extracts of primary root, and water content of root. Hardness of primary root showed no significant difference by paddy and upland cultivation until August, but it showed distinct difference on September, at which the hardness in upland cultivation was drastically decreased.