• 제목/요약/키워드: chemical classification

검색결과 512건 처리시간 0.029초

Environmental Sensor Selection : classification and its applications

  • Rhee, In-Hyoung;Cho, Daechul
    • 한국산학기술학회논문지
    • /
    • 제5권1호
    • /
    • pp.87-92
    • /
    • 2004
  • This review focuses on the developed and the being developed environmental sensors in particular biological sensors. As well as discussing the classification and some main principles, presenting current trend of the environmental sensors is given. Two main categories are immunosensors and catalytic sensors. In addition to those. DNA or RNA sensors or protein based sensors are discussed. Some crucial examples of the applications of such sensors are given to show how the sensor technology it used for environmental and biological monitoring, biomarkers of exposure.

  • PDF

노출기준 설정 화학물질의 CMR물질 정보 제공에 관한 연구 (A study on the provide of CMR substances information for Threshold Limit Values (TLVs) chemicals in KMoEL)

  • 이권섭;이혜진;이종한
    • 한국산업보건학회지
    • /
    • 제22권1호
    • /
    • pp.82-90
    • /
    • 2012
  • Objectives: This study was performed to provide workplaces with political guidelines that apply international CMRs (Carcinogens, Mutagens, Reproductive toxins) information to Public Notice of TLVs (Threshold Limit Values). We analyzed information supply status about CMRs of international agencies and compared substances for which TLVs are set in KMoEL (Ministry of Employment and Labor in Korea). Methods: We referred to the reliable literature about classification criteria of CMRs corresponding to UN GHS (Globally Harmonized System of classification and Labeling of chemicals) and Public Notice No. 2009-68 'Standard for Classification, Labeling of Chemical Substance and Material Safety Data Sheet' in KMoEL. The classification system of CMRs in professional organizations (IARC, NTP, ACGIH, EU ECHA, KMoEL, etc.) was investigated through the internet and literature. Conclusions: 191 chemical substances among total 650 substances with TLVs are classified as carcinogens. Also, 43 substances classified as mutagens, and 44 as reproductive toxicants. These results suggest that the information of CMRs in Public Notice of TLV will be reorganized to 191 carcinogens, 43 mutagens, and 44 reproductive toxicants.

화학 센서 기술 (Chemical sensors technology)

  • 이덕동
    • 센서학회지
    • /
    • 제18권1호
    • /
    • pp.1-21
    • /
    • 2009
  • There have been continued effects to develop various types of chemical sensors according to the demands in many application fields such as safety, pollution, environment, medical engineering and food industries etc. In this review, the author intended to cover the general aspects of chemical sensors, including the history of the development, the classification, the sensing properties, and the types and application examples. And the future outlook of the chemical sensor technology, focusing on the advanced materials, high technology fusion, miniaturized intelligent system and ubiquitous sensor networks etc., has been described.

Signal Processing Techniques Based on Adaptive Radial Basis Function Networks for Chemical Sensor Arrays

  • Byun, Hyung-Gi
    • 센서학회지
    • /
    • 제25권3호
    • /
    • pp.161-172
    • /
    • 2016
  • The use of a chemical sensor array can help discriminate between chemicals when comparing one sample with another. The ability to classify pattern characteristics from relatively small pieces of information has led to growing interest in methods of sensor recognition. A variety of pattern recognition algorithms, including the adaptive radial basis function network (RBFN), may be applicable to gas and/ or odor classification. In this paper, we provide a broad review of approaches for various types of gas and/or odor identification techniques based on RBFN and drift compensation techniques caused by sensor poisoning and aging.

Micronucleus Test for the Classification of Chemical Mutagenicity according to Globally Harmonized System

  • Rim, Kyung-Taek;Kim, Hyeon-Yeong;Chung, Yong-Hyun
    • Journal of Applied Biological Chemistry
    • /
    • 제56권4호
    • /
    • pp.191-197
    • /
    • 2013
  • To classify the chemical hazard according to globally harmonized system of classification and labeling of chemicals (GHS), we investigated the genotoxicity of three chemicals, methyl myristate, 2-ethylhexanoic acid zinc salt, N,N,N',N'-tetrakis(2-hydroxyethyl) ethylenediamine, using male ICR mice bone marrow cells for the screening of micronucleus induction. Although these three chemicals have already been tested numerous times, a micronucleus test has not been conducted. The seven week-old male ICR mice were tested at three dosages for the three chemicals, respectively. After 24 h of oral administration with the three chemicals, the mice were sacrificed and their bone marrow cells were prepared for smearing slides. As a result of counting the micronucleated polychromatic erythrocyte (MNPCE) of 2,000 polychromatic erythrocytes, all treated groups expressed no statistically significant increase of MNPCE compared to the negative control group. There were no clinical signs related with the oral exposure of these three chemicals. It was concluded that these three chemicals did not induce micronucleus in the bone marrow cells of ICR mice, and there was no direct proportion with dosage. These results indicate that the three chemicals have no mutagenic potential under each test condition, and it is not classified these chemicals as mutagens by GHS.

Bayesian Model for the Classification of GPCR Agonists and Antagonists

  • Choi, In-Hee;Kim, Han-Jo;Jung, Ji-Hoon;Nam, Ky-Youb;Yoo, Sung-Eun;Kang, Nam-Sook;No, Kyoung-Tai
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권8호
    • /
    • pp.2163-2169
    • /
    • 2010
  • G-protein coupled receptors (GPCRs) are involved in a wide variety of physiological processes and are known to be targets for nearly 50% of drugs. The various functions of GPCRs are affected by their cognate ligands which are mainly classified as agonists and antagonists. The purpose of this study is to develop a Bayesian classification model, that can predict a compound as either human GPCR agonist or antagonist. Total 6627 compounds experimentally determined as either GPCR agonists or antagonists covering all the classes of GPCRs were gathered to comprise the dataset. This model distinguishes GPCR agonists from GPCR antagonists by using chemical fingerprint, FCFP_6. The model revealed distinctive structural characteristics between agonistic and antagonistic compounds: in general, 1) GPCR agonists were flexible and had aliphatic amines, and 2) GPCR antagonists had planar groups and aromatic amines. This model showed very good discriminative ability in general, with pretty good discriminant statistics for the training set (accuracy: 90.1%) and a good predictive ability for the test set (accuracy: 89.2%). Also, receiver operating characteristic (ROC) plot showed the area under the curve (AUC) to be 0.957, and Matthew's Correlation Coefficient (MCC) value was 0.803. The quality of our model suggests that it could aid to classify the compounds as either GPCR agonists or antagonists, especially in the early stages of the drug discovery process.

인화성액체 취급 연구실의 폭발위험장소 구분에 관한 기준 적용 연구 (A Study on the Application of Criteria for the Classification of Explosive Hazardous Areas in Flammable Liquid Handling Laboratories)

  • 김민호;이준서;김은희;마병철
    • 한국가스학회지
    • /
    • 제26권6호
    • /
    • pp.1-8
    • /
    • 2022
  • 화학 산업의 발전에 따라 관련 사고가 빈번하게 발생하고 있으며 그 가운데 화재·폭발 사고가 큰 비중을 차지하고 있다. 화재 · 폭발 사고를 방지하기 위해 인화성액체를 취급하는 장소 등은 관련 법령에 근거하여 한국산업표준(KS C IEC60079-10-1)에 따라 폭발위험장소를 구분하도록 하고 있다. 이는 인화성액체를 취급하는 연구실에도 동일하게 적용된다. 본 논문에서는 연구실에서 인화성액체가 누출되어 증발 풀(pool)을 형성하는 경우 한국산업표준에 따른 폭발위험장소 구분 절차의 적용성과 환기속도의 변화가 누출특성에 미치는 영향을 확인하였다. 이를 통해 연구실과 같은 장소는 한국산업표준에 따른 폭발위험장소 구분에 대한 기준적용이 어려우며, 별도의 안전대책이 마련되어야 함을 알 수 있었다.

줌치한지를 이용한 제품개발(I) -머구쟁이의 분류와 조성분, 펄프화를 중심으로- (Development of the Products Using Jumchihanji( I ) -Classification and Chemical Components, Pulping of Meogujaengi-)

  • 전철
    • 펄프종이기술
    • /
    • 제35권2호
    • /
    • pp.58-64
    • /
    • 2003
  • Because of its tendency of making strong Hoc on the fiber surface with fines, Meogujaengi has not been valued as a material of Hanji. As an attempt to manufacture high value-added products using the material made from Jumchihanji, this study performed morphological classification and chemical component analysis and selection of pulping of Meogujaengi method. As a result, it can be concluded as follows, 1. Meogujaengi is assumed to be a local variety of Broussonetia karinoki and its outward appearance is distinguished from Broussonetia kazinoki. 2. The bast fiber of Meogujaengi is longer and thinner than that of Broussonetia papyrifera or Broussonetia kazinoki. However, because of the coarse linear of fiber tissue, there are many clusters. 3. The cluster phenomenon of Meogujaengi is nothing to do with its chemical components. Although the contents of its chemical components are different from those of Broussonetia kazinoki, no component was found that obstructs pulping. 4. The pretreatment for suppressing the occurrence of clusters of Meogujaengi was effective, and it was necessary to do secondary beating using hollander beater after beating mixed with PAM using knife beater.

Study on the spectroscopic reconstruction of explosive-contaminated overlapping fingerprints using the laser-induced plasma emissions

  • Yang, Jun-Ho;Yoh, Jai-Ick
    • 분석과학
    • /
    • 제33권2호
    • /
    • pp.86-97
    • /
    • 2020
  • Reconstruction and separation of explosive-contaminated overlapping fingerprints constitutes an analytical challenge of high significance in forensic sciences. Laser-induced breakdown spectroscopy (LIBS) allows real-time chemical mapping by detecting the light emissions from laser-induced plasma and can offer powerful means of fingerprint classification based on the chemical components of the sample. During recent years LIBS has been studied one of the spectroscopic techniques with larger capability for forensic sciences. However, despite of the great sensitivity, LIBS suffers from a limited detection due to difficulties in reconstruction of overlapping fingerprints. Here, the authors propose a simple, yet effective, method of using chemical mapping to separate and reconstruct the explosive-contaminated, overlapping fingerprints. A Q-switched Nd:YAG laser system (1064 nm), which allows the laser beam diameter and the area of the ablated crater to be controlled, was used to analyze the chemical compositions of eight samples of explosive-contaminated fingerprints (featuring two sample explosive and four individuals) via the LIBS. Then, the chemical validations were further performed by applying the Raman spectroscopy. The results were subjected to principal component and partial least-squares multivariate analyses, and showed the classification of contaminated fingerprints at higher than 91% accuracy. Robustness and sensitivity tests indicate that the novel method used here is effective for separating and reconstructing the overlapping fingerprints with explosive trace.

Land use classification using CBERS-1 data

  • Wang, Huarui;Liu, Aixia;Lu, Zhenhjun
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.709-714
    • /
    • 2002
  • This paper discussed and analyzed results of different classification algorithms for land use classification in arid and semiarid areas using CBERS-1 image, which in case of our study is Shihezi Municipality, Xinjiang Province. Three types of classifiers are included in our experiment, including the Maximum Likelihood classifier, BP neural network classifier and Fuzzy-ARTMAP neural network classifier. The classification results showed that the classification accuracy of Fuzzy-ARTMAP was the best among three classifiers, increased by 10.69% and 6.84% than Maximum likelihood and BP neural network, respectively. Meanwhile, the result also confirmed the practicability of CBERS-1 image in land use survey.

  • PDF