• Title/Summary/Keyword: chassis dynamometer test

Search Result 88, Processing Time 0.024 seconds

A Study on the Fuel Injection System Simulating a Vehicle Driven with FTP-75 Mode for Cold Transition Period (FTP-75 냉간 주행 모드로 운전하는 차량의 연료분사 모사시스템에 관한 연구)

  • Oh, Dae-San;Lee, Choong-Hoon
    • Journal of ILASS-Korea
    • /
    • v.16 no.2
    • /
    • pp.76-81
    • /
    • 2011
  • A fuel injection system which is operated with a real vehicle driving simulation was developed as an alternative to a vehicle test for the fuel injectors. The sensor signals that are supplied to the ECU were measured and recorded as a data file for a vehicle driven in FTP-75 mode in a chassis dynamometer. The imperative sensor signals of the throttle position, vehicle speed, engine speed, crank position, cam position, intake air flow, and cooling water and intake air temperature were reconstructed using FPGA DAQ boards and a PXI computer. The scanning results showed good agreement with the input signals that were reconstructed. The ECU HILS system operated successfully to drive six fuel injectors, which injected fuel in the same pattern as if they were mounted in the vehicle driven in FTP-75 mode. Also, the fuel injection system developed in this research shows the possibility of application in evaluating the characteristics of fuel injection rate for injectors according to properties of injected fuel with the real driving mode of vehicles.

Characteristics of Nano-Particles Exhausted from Diesel Passenger Vehicle with DPF

  • Park, Yong-Hee;Shin, Dae-Yewn
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.6
    • /
    • pp.533-538
    • /
    • 2006
  • The nano-particles are known to influence the environmental protection and human health. The relationships between transient vehicle operation and nano-particle emissions are not well-known, especially for diesel passenger vehicles with DPF(Diesel Particulate Filter). In this study, two diesel passenger vehicles were measured on a chassis dynamometer test bench. The particulate matter (PM) emission of these vehicles was investigated by number and mass measurement. The mass of the total PM was evaluated using the standard gravimetric measurement method, and the total number concentrations were measured on a ECE15+EUDC driving cycle using Condensation Particle Counter (CPC). According to the investigation results, total number concentration was $1.14{\times}10^{11}$M and mass concentration was 0.71mg/km. About 99% of total number concentration was emitted during the $0{\sim}400s$ because of engine cold condition. In high temperature and high speed duration, the particulate matter was increased but particle concentration was emitted not yet except initial engine cold condition According to DPF performance deterioration, the particulate matter was emitted 2 times and particle concentration was emitted 32 times. Thus DPF performance deterioration affects particle concentration more than PM.

Evaluating System for Fuel Injector with the Condition of a Driving Vehicle Mode Using an ECU HILS (ECU HILS를 이용한 실차 주행 조건에서의 인젝터 평가시스템)

  • Lee, Choong-Hoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.812-828
    • /
    • 2010
  • A fuel injection system using an ECU HILS as an alternate to a vehicle test for the fuel injectors was developed. The throttle position, vehicle speed, engine speed, crank position, cam position, intake air flow, and several other sensor signals that are supplied to the ECU were measured and recorded as a data file for a vehicle driven in the FTP-75 mode in a chassis dynamometer. Electric signals that are equivalent to the sensor signals from the vehicle are reconstructed from the recorded data file using data acquisition boards, microprocessors, and computers. All sensor signals are supplied to the ECU with synchronized timing using a computer program. The findings show that the cost and time of vehicle experiments can be reduced using the ECU HILS system. Moreover, the repeatability of the generation of sensor signals can enhance the accuracy of a range of experiment related to vehicle testing. An ECU scanner that scans the sensor signals that are input to the ECU through a serial port was used to assess the accuracy of the reconstructed signals. The scanning results show good agreement with the reconstructed input signals. Injectors were connected to the ECU HILS system and were driven by the system to measure the quantity of injected fuel.

The Simulation of Fuel Economy Considering Transient Control Condition in a Gasoline Engine Vehicle (가솔린 엔진 장착 차량에서 과도구간 제어특성을 고려한 연비주행모드 시뮬레이션)

  • Jung, Yeon-Sik;Park, Jin-Il;Lee, Jong-Hwa;Park, Kyoung-Seok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.106-112
    • /
    • 2008
  • Modern vehicles require a high degree of refinement, including good drive ability to meet customer demands. Vehicle drive ability, which becomes a key decisive factor for marketability, is affected by many parameters such as engine control and the dynamic characteristics in drive lines. This paper focuses on the simulation of FTP-75 mode which is considered with spark timing control on transient condition. The acceleration is the most important factor for vehicle fuel economy. The retard of spark timing increases in proportion to acceleration. Likewise, bsfc(break specific fuel consumption) which is affected by spark timing also increases in proportion to acceleration. The result of simulation considered transient condition shows 0.3% of error comparing with a test on chassis-dynamometer.

Characteristic Analysis of Regulated Pollutants Emitted from Passenger Cars according to Fuel Additives (연료첨가제 주입에 따른 승용차의 규제물질 배출특성 분석)

  • Jung, Sungwoon;Son, Jihwan;Hong, Heekyoung;Sung, Kijae;Kim, Jeongsoo;Kim, Jounghwa
    • Journal of ILASS-Korea
    • /
    • v.20 no.4
    • /
    • pp.223-229
    • /
    • 2015
  • This paper was designed to investigate emission characteristics of regulated pollutants (CO, HC, NOx and PM) from 134 diesel and gasoline passenger cars based on emission standards according to fuel additives. The experiments using chassis dynamometer were conducted under NEDC and CVS-75 modes. Comparison for fuel additive management and test between Korea, USA, EU and Japan, Korea was more strict than others. The fuel additives of this study was satisfied within fuel manufacturing standards. For with/without fuel additives according to diesel emission standards, NOx of EURO 4 and EURO 5 showed a relatively similar tendency. In the case of PM reduction rate, EURO 5 was over 20% increased than EURO 4. In the case of standard deviation/average ratio for gasoline vehicles, variation interval was big for LEV 23.3~58% and ULEV 31.6~56.4%. Following the imposition of stricter regulations (EURO 5 and ULEV), difference rate for standard deviation was big. Especially, in the case of diesel vehicles, difference rate for NOx 68% and PM 48% was most big. The results of present study will be of assistance in completing the legislative process and will provide basic data to set up emission standards for fuel additives in Korea.

A Study on Urban Driving Pattern (실 도로 주행 특성에 대한 연구)

  • 한상명;김창현
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.9-14
    • /
    • 2002
  • The durability prediction of emission control components, especially 02 sensor and catalytic converter, is getting more important as emission regulation is getting stricter and vehicle durability mileage requirement is also extended from 80,000 ㎞ to 160,000 km in Korean market. And the duration of vehicle mileage accumulation to get vehicle exhaust emission deterioration factor for certification is required to be shorter in order to reduce the vehicle development time. Since most of the vehicle emission development tests are done on chassis dynamometer and aging bench by using vehicle aging modes, real road condition and in-use driving patterns must be reflected into them to predict the vehicle emission level and to meet emission regulation especially at high mileage. In order to get the frequent driving pattern of vehicle and the aging characteristic of emission components, a vehicle was tested by changing drivers and driving roads around Seoul. Real road driving patterns were analyzed and compared with those of the certification modes which are well known in automotive industry.

A Study on Vehicle-based Durability Evaluation for Weight-reduced Valve Parts of the Dual Clutch Transmission

  • ChanEun Kim;TaeWook Kim
    • Tribology and Lubricants
    • /
    • v.40 no.1
    • /
    • pp.24-27
    • /
    • 2024
  • A monotype valve body for a dual clutch transmission has the potential to reduce costs, weight, and manufacturing time by modularizing various parts, including those of existing solenoid packs and valve bodies, into one through the application of super-precision die casting technology. However, this approach may lead to challenges such as reduced rigidity and increased interference due to modularization and compactness, impacting both product performance due to the reduced weight as well as durability and reliability. Unlike existing products, this approach requires a high-precision thin-wall block to avoid more complicated flow line formation, interference between flow lines, and leaks, as well as a strict quality requirement standard and precise inspections including detection of internal defects. To conduct precise inspections, we built an equivalent model corresponding to a driving distance of 300,000 km. Testing involved simulating actual road loads using a real vehicle and a chassis dynamometer in the FTP-75 mode (EPA Federal Test Procedure). The aim of the study was to establish a vehicle load-based part durability model for manufacturing a mono-type valve body and to develop fundamental technology for part weight reduction through preliminary design by introducing analytical weight reduction technology based on the derived results.

Speed-Based Emission Factor regarding Vehicle Specific Power and Acceleration during On-road Driving (도로 주행 중의 비출력 및 가속도 조건을 반영한 차속별 배출계수 연구)

  • Lee, Tae-Woo;Keel, Ji-Hoon;Park, Jun-Hong;Park, Yong-Hee;Hong, Ji-Hyung;Lee, Dae-Yup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.73-81
    • /
    • 2011
  • The performance of emission factor has been validated by comparison with on-road test data. Emission factor, which is a function of vehicle speed, has been acquired based on chassis dynamometer test with NIER driving pattern. Portable Emission Measurement System, PEMS has measured on-road emission. Test vehicle was operated on defined test routes under different driving conditions, and made ten trips along its route. Emission factors properly simulate on-road test result, although there is some drawback to consider variety of driving condition on real world. Vehicle specific power and acceleration have been used to explain the distributed on-road result within same vehicle speed range. The trend in carbon dioxide and nitrogen oxide emission with respect to specific power and acceleration is clear. It has been found that specific power is a good explanatory variable for microscopic analysis for modal test result. Acceleration is good for microscopic as well as macroscopic analysis.

Analysis of fuel economy characteristics depending on the fuel quality and calculation method changed (연료품질 및 연비계산 방법 변화에 따른 연비특성 분석)

  • Lee, Min-Ho;Lim, Wan-Gyu;Lim, Jae-Hyuk;Kim, Ki-Ho
    • Journal of Power System Engineering
    • /
    • v.20 no.4
    • /
    • pp.52-62
    • /
    • 2016
  • Nowadays, emissions of a vehicle are been getting by testing on a chassis dynamometer and a test modes. Also, fuel efficiency is calculated by carbon-balance method that is applying the emissions(CO, THC and $CO_2$) to the fuel calculation formular. In Korea, before 2014, the formular did not include the fuel factors (density, net heat value and carbon weight fraction), but the constants were based on the fuel properties of 2000s. So, this formular did not consider a characteristic of test fuel property that was changed when progressing fuel efficiency test. The characteristics of test fuel property which was distributed in domestic have a difference of quality depending on production regions and oil-refining facilities. Because the fuel properties are variable value during refineries, crude oils and blending contents of a bio-fuel, vehicle fuel is changed for each test. Therefore, the fuel qualities need to apply for a fuel economy test. In this paper, changing patterns of a fuel properties were reviewed during history of fuel standards. Also, the appropriateness of the methods was discussed by calculating and comparing fuel economies with the fuel factors and the constants.

NOx Emission Characteristics of Diesel Passenger Cars Met Euro 6a and 6b Regulations on Off-cycles (Off-cycle에서 Euro 6a 및 6b 규제 만족 디젤 자동차의 NOx 배출 특성)

  • Kim, Sung-Woo;Lim, Jae-Hyuk;Kim, Ki-Ho
    • Journal of Power System Engineering
    • /
    • v.21 no.6
    • /
    • pp.68-78
    • /
    • 2017
  • Major countries have tighten their NOx regulation of diesel passenger cars. In the case of the EU, the regulation has been toughen up to 6.25 times since 2000. Despite the regulation the NOx concentration of the ambient has not been reduced proportionally. Futhermore, some manufacturers were disclosed using a defeat device for meeting the regulation illegally. As these issues, to reduce NOx emission practically, Korea and the EU introduced the real-world driving emission(RDE) regulation and the test method that will be applied after 2017. Also, the US has used the test equipment(PEMS) to detect a defeat device. In this paper, for the regulation to make a soft landing in Korea, 4 diesel passenger cars which met Euro 6a~6b regulation and were equipped with LNT/SCR were tested at a chassis dynamometer with environmental chamber applying the off-cycles(FTP, US06, SC03, HWFET and CADC) and several ambient condition(-7 and $14^{\circ}C$) as well as certification mode(NEDC, WLTC@ $23^{\circ}C$). The result of the test showed that the ambient temp. and the engine load as a test mode impacted the NOx emission of the cars while the vehicles with SCR emitted NOx lower than with LNT. Additionally, to propose an effective RDE test method, the above result was compared with the results of the other papers which tested RDE using the same cars.