• Title/Summary/Keyword: charging method

Search Result 680, Processing Time 0.031 seconds

Power stage for Contact-less Induction Charging (비접촉식 충전기의 전력 전달부 설계)

  • 이민철;최배근;홍영욱;조규형
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2939-2942
    • /
    • 2003
  • A new contactless Li-ion battery charging system was proposed. The conventional methods for charging Li-ion battery have some weak points. For example, there can be a contact failure, a poor waterproof, and a difficulty to standardize the battery charging systems. The new proposed system can overcome these weak points. The new charging system is composed of power transfer part and data transfer part. This paper focuses on the power transfer part for contactless battery charging. The power stage is mainly composed of PPRC(Push-pull Parallel Resonant Converter) and flyback converter. The new method of chaging Li-ion battery was proposed and PPRC + flyback-boost topology was analyzed. The proposed toplogy was tested under the constant voltage control and the constant current control which are adequate for charging Li-ion battery.

  • PDF

A 20kHz Inverter for Inductive Charging System of Electric Vehicle (전기자동차 비접촉식 충전시스템을 위한 20kHz 인버터 설계)

  • Kim, Chul-Woo;Kim, Sang-Beom;Soh, Joon-Young;Lim, You-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1175-1176
    • /
    • 2011
  • Electric Vehicle Supply Equipment(EVSE) is a system or an equipment to supply electric power for charging the traction batteries on the electric vehicle. EVSEs are classified with a conductive charging system and an inductive charging system by the power transfer method. Inductive charging systems are necessary to use high frequency converters to increase the output power and to reduce the size of the charging systems. In this paper, a 20kHz inverter for inductive charging system has been designed and PSCAD/EMTDC have been used to simulate the output characteristics of the 20kHz inverter.

  • PDF

A Study on Charging Efficiency Variability by Utilizing Remaining Capacity of EV DC Charging Facility Batteries of Railway Electric Power Grids (철도전력망을 이용한 EV DC 충전설비 배터리 잔존용량에 따른 충전효율 가변성 연구)

  • Kim, Ki-Suk;Jung, Ho-Sung;Park, Young;Park, Chan-Bae;Park, Chul-Min;Jang, Gil-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.2171-2172
    • /
    • 2011
  • Recently, while interests on supply of electric vehicles have increased there still are insufficient charging facilities. As a solution to this matter, using electric power grids that constantly retain about 30~50[%] residual power is being considered. Therefore proposed in this paper railway, is a method to establish a charging infrastructure to utilize railway DC power grids. In addition we designed a high-speed DC charging system, and simulated improvements of the charging structure's charging efficiency according to remaining capacity of batteries.

  • PDF

Charging and Discharging Characteristics of Electric Double Layer Capacitors used for a Storage Battery of Solar Energy

  • Sung, Youl-Moon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.2
    • /
    • pp.97-102
    • /
    • 2007
  • The charging/discharging characteristics of electric double layer capacitors (EDLCs) for an electric power storage device application were investigated. The specific area of the carbonaceous electrode surface by the BET method was in the range of $1800{\sim}2000\;m^2/g$. The charge distributions during charging and discharging were measured by means of a pulsed-electro-acoustic (PEA) method, and the voltage characteristics of EDLCs connected to solar cells were evaluated. The results showed that the distributions of positive and negative charges were spatially uneven, which was due to the mobility of the positive and negative charges in the carbonaceous electrode surface of the EDLCs. The charge accumulation region concentrated on central part of the carbonaceous electrode and the required times for charging and discharging were almost same.

Analysis for Evaluating the Impact of PEVs on New-Town Distribution System in Korea

  • Choi, Sang-Bong
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.859-864
    • /
    • 2015
  • This paper analyzes the impact of Plug-in Electric vehicles(PEVs) on power demand and voltage change when PEVs are connected to the domestic distribution system. Specifically, it assesses PEVs charging load by charging method in accordance with PEVs penetration scenarios, its percentage of total load, and voltage range under load conditions. Concretely, we develop EMTDC modelling to perform a voltage distribution analysis when the PEVs charging system by their charging scenario was connected to the distribution system under the load condition. Furthermore we present evaluation algorithm to determine whether it is possible to adjust it such that it is in the allowed range by applying ULTC when the voltage change rate by PEVs charging scenario exceed its allowed range. Also, detailed analysis of the impact of PEVs on power distribution system was carried out by calculating existing electric power load and additional PEVs charge load by each scenario on new-town in Korea to estimate total load increases, and also by interpreting the subsequent voltage range for system circuits and demonstrating conditions for countermeasures. It was concluded that total loads including PEVs charging load on new-town distribution system in Korea by PEVs penetration scenario increase significantly, and the voltage range when considering ULTC, is allowable in terms of voltage tolerance range up to a PEVs penetration of 20% by scenario. Finally, we propose the charging capacity of PEVs that can delay the reinforcement of power distribution system while satisfying the permitted voltage change rate conditions when PEVs charging load is connected to the power distribution system by their charging penetration scenario.

Development of the Switching Mode Conversion Type Pulse Charger for the Lead Battery of Solar Cell Generator Equipment by Fly-Back Converter Method (플라이백 컨버터방법에 의한 태양광발전설비의 납축전지 스위칭모드 전환형 펄스충전기 개발)

  • Shin, Choon-Shik;An, Young-Joo;Kim, Dong-Wan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.1
    • /
    • pp.20-26
    • /
    • 2009
  • In this paper, the switching mode conversion type pulse charger by fly-back converter method for lead battery of the solar cell generator equipment is proposed. And we propose the control circuit and design method of insulated switching mode convert type pulse charger by fly-back convert method in the lead battery. The proposed system can minimize the current consumption by digital pulse. Also the proposed system can generate the constant 10[KHz] frequency, transmit the signal with main control system in the power control system. And it supervises the state of lead battery using one chip micro processor. The proposed the switching mode conversion type pulse charger by the fly-back converter method can charge fast and stabilize lead battery with nominal value 12[V], 20[AH]. Also we propose the design procedure of the power control circuit for turn ratio of fly-back inductor and determining method of values such as the charging current, bulk current, partial current, over current value and fixed charging voltage. The experiment results for the voltage and current wave for partial, bulk, over and fixed charging period show the good charging effect and performance. And the PCB and internal coupling diagram of the switching mode conversion type pulse charger by fly-back converter method is presented.

Battery Cell Balancing with Hybrid Architecture of Serial and Parallel Charging (직·병렬 하이브리드 충전 구조를 사용한 배터리 균형 충전)

  • Jeong, Euihan;Yang, Changju;Han, Seungho;Kim, Hyongsuk
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.4
    • /
    • pp.609-613
    • /
    • 2016
  • A hybrid charging method with serial and parallel architecture has been developed to resolve the unbalanced charge problem among battery cells for Electric Vehicles. In this method, the major charging is performed with serial part and the balancing is carried out with the parallel part, where the serial part is big and heavy but the parallel part is smaller and lighter than serial part. A sensor array to detect the individual battery cell voltage, duty rate control incorporated IGBTs, and battery management system are employed as the core parts of the proposed system.

A Study on the Simulation of the Corona Charging Process of Polypropylene Electret Cell Using Finite Element Method (유한요소법을 이용한 폴리프로필렌 일렉트렛트 셀의 코로나 대전과정 시뮬레이션에 관한 연구)

  • Lee, Su-Kil;Park, Geon-Ho;Jung, Il-Hyung;Jang, Kyung-Uk;Lee, Joon-Ung
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.169-171
    • /
    • 1993
  • In order to estimate space charging process in the corona charging apparatus which has been used to make polymer electret cell, the electrical properties of 30[${\mu}m$] thick polypropylene film were obtained from TSC measurement after corona charging between copper knife electrode and aluminum cylinder electrode with the voltage of -8, -7, -6, -5 (kV). And, the electrostatic contour and the electric field vector were calculated using Finite Element Method with the electrical properties obtained from TSC spectra analysis. The edge effect around the edge of knife electrode affects electrostatic contour on the surface of specimen and the electric field concentration inside the polymer. As a result the uneven charging state in the electret cell due to the mistake of design was calculated, and the optimal design of corona charging apparatus opprobriate to various specimen was come to be practicable.

  • PDF

PFC and Zero Torque Control of SRM for EV Battery Charging (EV용 충전 인덕터용 PFC 및 제로 토크제어)

  • Rashidi, A.;Namazi, M.M.;Saghaian-nezhad, S.M.;Lee, D.H.;Ahn, J.W
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.652-654
    • /
    • 2015
  • Integrated switched reluctance motor drive as an electric vehicle battery charger is presented in this paper. The SRM, which is used as the traction power in the driving mode, is used in the charge circuit to improve the power factor of charging system. The charging circuit can share the power switches of the asymmetric converter and phase windings of SRM to charge the battery, and can reduce the size and cost of the system in the plug-in system. To keep the rotor at standstill, zero torque control method is proposed. Since the inductances of the SRM windings are not same at any stop position, the charger controller controls the reference current to satisfy the total charging current with PFC and zero torque condition. A novel cubic equation method is proposed as a current reference distributor of the charging controller. Simulations are performed by MATLAB software and results satisfy the Effectiveness of proposed battery charging system.

  • PDF

Analysis of Choice model for EV Charger Types and willingness to pay for Charging Rate based on Logit model (로짓모형을 이용한 전기자동차 충전시설 선택모형 및 충전요금 지불의사 분석 연구)

  • Byun, Wan Hee;Lee, Kihong;Kee, Ho Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.4
    • /
    • pp.56-65
    • /
    • 2013
  • The word is endeavoring to reduce greenhouse gases with the sense of crisis caused by the continuous climate change. As a method to decrease greenhouse gases, motors driven by fossil fuels are being substituted by EV in the field of transportation. Meanwhile, for the spread of EV, charging installations are divided into general charging type and quick charging type. Also, charging amount and time are main factors to decide charging pay. But, because the opportunity coast for the charging time varies depending on the private situations, it is very important to understand exact phenomenon for the spread of EV charging installations and charging pay policy. Therefore this paper suggested the choice model of charging installation and time value in various situations by using Logit model to make clear the relationship between a choice of charging installation, charging time and willingness to pay for charge.