• 제목/요약/키워드: charging effect

검색결과 331건 처리시간 0.021초

Heat Transfer Characteristics of the Spherical Capsule Storage System Using Paraffins

  • Cho, Keum-Nam;Choi, S. H.
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제6권
    • /
    • pp.113-123
    • /
    • 1998
  • The present study is to investigate the effect of experimental parameters on the heat transfer characteristics of a spherical capsule storage system using paraffins. N-Tetradecane and mixture of n-Tetradecane 40% and n-Hexadecane 60% were used as paraffins. Water with inorganic material was also tested for the comparison. The experimental parameters were varied for the Reynolds number from 8 to 16 and for the inlet temperature from -7 to 2$^{\circ}C$. Measured local temperatures of spherical capsules in the storage tank were utilized to calculate charging and discharging times, dimensionless thermal storage amount, and the average heat transfer coefficients in the tank. Local charging and discharging times in the storage tank were significantly different. The effect of inlet temperature on charging time was larger than that on discharging time, but the effect of Reynolds number on charging time was smaller than that on discharging time. Charging time of paraffins was faster by 11~72% than that of water with inorganic material, but little difference of discharging time was found among them. The effect of Reynolds number on the dimensionless thermal storage was less during charging process and more during discharging process than the effect of inlet temperature. The effect of the inlet temperature and the Reynolds number on the average heat transfer coefficient of the storage tank was stronger during discharging process than during charging process. The average heat transfer coefficients of the spherical capsule system using paraffins were larger by 40% than those using water.

  • PDF

SIMS 분석조건이 Bismuth Titanate 박막의 깊이방향 조성 해석에 미치는 영향 (Effect of Surface Charging on the SIMS Depth Profile of Bismuth Titanate Thin Film)

  • 김재남;이상업;권혁대;신광수;전웅;박병옥;조상희
    • 분석과학
    • /
    • 제14권6호
    • /
    • pp.486-493
    • /
    • 2001
  • 본 연구는 SIMS를 이용한 bismuth titanate 박막의 깊이방향 분석에 있어서 mesh grid를 사용한 경우와 사용하지 않은 경우, offset voltage를 사용한 경우와 사용하지 않은 경우 등 분석조건에 따른 charging effect 그리고 검출한계의 특성을 검토하고자 하였다. 결과에 따르면 -40 V의 offset voltage를 사용하였을 경우는 charging effect의 감소는 물론 검출한계도 낮출 수 있었으나 mesh grid를 사용하였을 경우에는 charging effect는 다소 줄일 수 있었으나 반면 검출 한계는 오히려 높아졌다. O- 일차이온을 적용한 경우는 -40 V의 offset voltage를 사용하였을 때와 동일한 효과를 얻을 수 있었다.

  • PDF

전기집진기에서의 에어로졸 나노입자의 하전 및 집진 특성 연구 (Charging and Collection Characteristics of Aerosol Nanoparticles in an Electrostatic Precipitator)

  • 한방우;황순철;홍원석;정상현;김용진
    • 연구논문집
    • /
    • 통권34호
    • /
    • pp.21-28
    • /
    • 2004
  • In this study, we report an investigation for the charging and collection of aerosol nanoparticles in an electrostatic precipitator (ESP) according to particle charging and diffusion effects. The competition between charging probability and diffusion effect determines the collection efficiency of nanoparticles in the ESP. In conclusion, collection efficiency continuously decreased with the reduction in the particle size. This indicates that poor partial charging effect of nanoparticles is more dominant than their diffusion effect in the ESP for the nanoparticles in the particle size range of 4-20 nm. Theoretical calculations using a unipolar diffusion charing theory were in good agreement with the experimental data for the nanoparticles less than 20 nm in diameter.

  • PDF

전기집진기의 10 nm 급 초미세 나노입자의 하전 및 집진 특성 (Characteristics of Charging and Collection of 10-nm-Class Ultrafine Nanoparticles in an Electrostatic Precipitator)

  • 한방우;김학준;김용진;송동근;홍원석;신완호
    • 대한기계학회논문집B
    • /
    • 제35권10호
    • /
    • pp.1013-1018
    • /
    • 2011
  • 전기집진에서의 10 nm 급 초미세 나노입자의 하전 및 집진 특성을 파악하였고, 나노입자의 확산효과와 비교해 보았다. 나노입자의 하전율과 확산손실 효과의 지배력에 따라 전기집진기에서의 나노입자 집진효율이 결정되는 것을 확인할 수 있었다. 10nm 급 영역에서는 입자 크기가 작아질수록 지속적으로 집진효율이 감소하였다. 10 nm 이하의 영역에서는 나노입자의 부분적 하전효과가 전기집진기 내의 확산 손실 효과보다 지배적인 것을 알 수 있었다. 10 nm 이하의 나노입자에 대하여 집진효율 실험 결과가 단극 확산 하전 이론을 적용한 입자하전율 계산 결과와도 잘 일치하였다.

전기자동차의 충전부하 모델링 및 충전 시나리오에 따른 전력계통 평가 (Evaluation of the Charging effects of Plug-in Electrical Vehicles on Power Systems, taking Into account Optimal Charging Scenarios)

  • 문상근;곽형근;김진오
    • 전기학회논문지
    • /
    • 제61권6호
    • /
    • pp.783-790
    • /
    • 2012
  • Electric Vehicles(EVs) and Plug-in Hybrid Electric Vehicles(PHEVs) which have the grid connection capability, represent an important power system issue of charging demands. Analyzing impacts EVs charging demands of the power system such as increased peak demands, developed by means of modeling a stochastic distribution of charging and a demand dispatch calculation. Optimization processes proposed to determine optimal demand distribution portions so that charging costs and demand can possibly be managed. In order to solve the problems due to increasing charging demand at the peak time, alternative electricity rate such as Time-of-Use(TOU) rate has been in effect since last year. The TOU rate would in practice change the tendencies of charging time at the peak time. Nevertheless, since it focus only minimizing costs of charging from owners of the EVs, loads would be concentrated at times which have a lowest charging rate and would form a new peak load. The purpose of this paper is that to suggest a scenario of load leveling for a power system operator side. In case study results, the vehicles as regular load with time constraints, battery charging patterns and changed daily demand in the charging areas are investigated and optimization results are analyzed regarding cost and operation aspects by determining optimal demand distribution portions.

Effect of Hydrogen Charging Time and Tensile Loading Speed on Tensile Properties of 304L Stainless Steels

  • Hwang, SeungKuk;Lee, Sangpill;Lee, Jinkyung;Bae, Dongsu;Lee, Moonhee;Nam, Seunghoon
    • 한국산업융합학회 논문집
    • /
    • 제22권1호
    • /
    • pp.11-20
    • /
    • 2019
  • This study dealt with the tensile strength characteristics of stainless steel 304L steel by hydrogen charging. Especially, the effect of hydrogen charging time on the tensile strength and ductility of 304L stainless steels was evaluated, in conjunction with the observation of their fracture surfaces. The tensile properties of hydrogen-charged 304L stainless steels were also investigated with the variation of tensile loading speeds. The hydrogen amount of 304L stainless steels obviously increased with the increase of hydrogen charging time. The tensile properties of 304L stainless steels were clearly affected by the short term charging of hydrogen. In particular, the elongation of 304L stainless steels decreased with increasing hydrogen charging time, due to the hydrogen embrittlement. It was also found that the tensile properties of hydrogen-charged 304L stainless steels were very sensitive to the crosshead speed for tensile loading.

센서재료용 일렉트렛트 형성에 대전과정 시뮬레이션 (Simulation of Charging Process in Forming Electret for Sensor Material)

  • 박건호
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2011년도 제43차 동계학술발표논문집 19권1호
    • /
    • pp.185-188
    • /
    • 2011
  • In order to estimate spatial charging process in the corona charging which has been used to make polymer electret, the electrical properties of polypropylene film were obtained from Thermally Stimulated Current(TSC) measurements after corona charging between knife electrode and cylinder electrode with the voltages of -5, -6, -7 and -8[kV], respectively. And then the electrostatic contour and the electric field vector were also simulated by using Finite Element Method(FEM). The edge effect around edge of knife electrode affected the electrostatic contour on surface of specimen and the electric field concentration inside specimen. The uneven charging state in the electret due to the mistake on design could be calculated and so the optimal design of corona charging device which is appropriate to various materials is come to be practicable.

  • PDF

레이저 조사에 따른 실리콘 솔라셀의 출력 특성 (Electric Power Charging of Silicon Solar Cells using a Laser)

  • 이후승;배한성;김성범;주윤재;김정오;노지환
    • 한국생산제조학회지
    • /
    • 제25권5호
    • /
    • pp.362-367
    • /
    • 2016
  • Recently, wireless charging systems have expanded their applications from household electrical appliances to outdoor activity devices. In wireless charging systems, solar cells have versatile advantages, such as abundant raw materials within the earth, reasonable prices of products, and highest power conversion efficiency. In this study, the photovoltaic effect between a silicon solar cell and a photon of infrared wavelength was simulated using a Shockley diode equation. A solar cell power charging system was then set up to: 1) clarify mechanisms of the charging interaction based on the photovoltaic effect with a laser source, and 2) verify interdependency of the parameters: laser settings and geometrical position between a solar cell and the laser. As was observed, the solar cell generates more power when the photon was irradiated uniformly, intensively, and vertically on the surface of the solar cell.

대전된 입자의 영상효과에 의한 필터효율 향상에 관한 실험적 연구 (An Experimental Study on Enhancement of the Filter Efficiency by the Image Effect of Charged Particle)

  • 이창선;정해영;김상수
    • 대한기계학회논문집B
    • /
    • 제24권6호
    • /
    • pp.760-768
    • /
    • 2000
  • Filter efficiency of electrically charged particle in uncharged fibrous filter was measured. In previous studies, the effect of charged particle on filter efficiency was investigated but there was difficulty in measuring of image effect that is appeared at the charged small particle. We could easily measure the image effect with charging small particles by photoelectric charging. The spark discharge aerosol generator and a differential mobility analyzer (DMA) were used to generate sub-micron monodisperse particles (${\leq}200$ nm). The generated particles were charged in photoelectric charging process using ultraviolet lamp and electric field. The filter efficiency of the charged particles, classified by another DMA, was measured in filter tester using a condensation nucleus counter (CNC) as function of particle diameter, particle charge and airflow velocity. It is shown that the filter efficiency increases with increasing charge number of the particle and is affected by particle size and flow velocity. Single fiber filter efficiency mainly depends on image force parameter and peclet number. The peclet number was not considered at previous other papers. We propose a modi fied experimental correlation as function of image force parameter and peclet number.

Effect of Hydrogen Charging on the Mechanical Properties of 304 Stainless Steels

  • Lee, Sang-Pill;Hwang, Seung-Kuk;Lee, Jin-Kyung;Son, In-Soo;Bae, Dong-Su
    • 동력기계공학회지
    • /
    • 제19권5호
    • /
    • pp.73-79
    • /
    • 2015
  • The effects of hydrogen charging on the mechanical properties of 304 stainless steels were investigated in conjunction with the detailed examinations of their fracture modes. The dependence of the absorbed impact energy and the surface hardness of the 304 stainless steels on the hydrogen charging time was characterized. The tensile properties of the 304 stainless steels by the variation of cross-head speed were also evaluated at the room temperature. The hydrogen charging was performed by an electrolysis method for all specimens of the 304 stainless steels. The mechanical properties of the 304 stainless steels exhibited the sensitivity of embrittlement due to a hydrogen charging. The correlation between mechanical properties and fracture surfaces was discussed.