• Title/Summary/Keyword: charging current

Search Result 598, Processing Time 0.03 seconds

Analysis and Design of a 3-phase Series-Resonant type High Voltage Capacitor Charger (3상 직렬공진형 고전압 커패시터 충전기의 해석 및 설계)

  • Lee, Byungha;Park, Sangeun;Cha, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.510-516
    • /
    • 2013
  • This paper suggests a 3-phase series-resonant type high voltage capacitor charger for an EML pulsed power system. The operating principle on the charger is explained by an equivalent circuit. Additionally, we analyze the charging characteristic in one discontinuous conduction mode and three continuous conduction modes. The analysis shows that the resonant current per phase is two thirds of the 3-phase charger's average charging current and one third of the single-phase charger's average charging current with the same capacity. We suggest a design method of the 3-phase capacitor charger in each operational mode and present an example of 3.5 kW capacitor charger at ${\omega}_s=0.33{\omega}_r$. The 3.5 kW 3-phase capacitor charger prototype is assembled with a TI28335 controller and a 40 kJ, 7 kV capacitor. The design rules based on the analysis are verified by experiment.

A Study on the Output Stabilization of the Nd:YAG Laser by the Monitoring of Capacitor Charging Voltage

  • Noh, Ki-Kyong;Song, Kum-Young;Park, Jin-Young;Hong, Jung-Hwan;Park, Sung-Joon;Kim, Hee-Je
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.3
    • /
    • pp.96-100
    • /
    • 2004
  • The Nd: YAG laser is commonly used throughout many fields such as accurate material processing, IC marking, semiconductor annealing, medical operation devices, etc., due to the fact that it has good thermal and mechanical properties and is easy to maintain. In materials processing, it is essential to vary the laser power density for specific materials. The laser power density can be mainly controlled by the current pulse width and pulse repetition rate. It is important to control the laser energy in those fields using a pulsed laser. In this paper we propose the constant-frequency current resonant half-bridge converter and monitoring of capacitor charging voltage. This laser power supply is designed and fabricated to have less switching loss, compact size, isolation with primary and secondary transformers, and detection of capacitor charging voltage. Also, the output stabilization characteristics of this Nd: YAG laser system are investigated. The test results are described as a function of laser output energy and flashlamp arc discharging constant. At the energy storage capacitor charges constant voltage, the laser output power is 2.3% error range in 600[V].

Analysis of Failure in Miniature X-ray Tubes with Gated Carbon Nanotube Field Emitters

  • Kang, Jun-Tae;Kim, Jae-Woo;Jeong, Jin-Woo;Choi, Sungyoul;Choi, Jeongyong;Ahn, Seungjoon;Song, Yoon-Ho
    • ETRI Journal
    • /
    • v.35 no.6
    • /
    • pp.1164-1167
    • /
    • 2013
  • We correlate the failure in miniature X-ray tubes with the field emission gate leakage current of gated carbon nanotube emitters. The miniature X-ray tube, even with a small gate leakage current, exhibits an induced voltage on the gate electrode by the anode bias voltage, resulting in a very unstable operation and finally a failure. The induced gate voltage is apparently caused by charging at the insulating spacer of the miniature X-ray tube through the gate leakage current of the field emission. The gate leakage current could be a criterion for the successful fabrication of miniature X-ray tubes.

Analysis and Design of Half-Bridge Series Resonant Converter for Non-Contact Battery Charger (무접점 베터리 충전 장치용 Half-Bridge 직렬 공진 컨버터 분석 및 설계)

  • Kim, Chang-Gyun;You, Jung-Sik;Park, Jong-Hu;Cho, Bo-Hyung;Seo, Dong-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2508-2511
    • /
    • 1999
  • A non-contact battery charger which transfers energy using magnetic field without any electrical contacts is designed using half-bridge series resonant converter. This converter utilizes series resonance to reduce the undesirable effect of large leakage inductance of the non-contact transformer and ZVS operation can reduce switching losses. In this paper. analysis and design procedure of half-bridge series resonant converter with non-contact transformer is presented. Input voltage is 85VAC ${\sim}$ 270VAC, output voltage and current is 4.1V and 800mA, respectively. Furthermore, a method for calculating the secondary current of the transformer to control battery charging current in constant current charging mode which is required for litium-ion battery is proposed and the performance is verified from experiments.

  • PDF

A Study on the Low Level Leakage Currents of Silicon Oxides (실리콘 산화막의 저레벨 누설전류에 관한 연구)

  • 강창수;김동진
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.1
    • /
    • pp.29-32
    • /
    • 1998
  • The low level leakage currents in silicon oxides were investigated. The low level leakage currents were composed of a transient component and a do component. The transient component was caused by the tunnel charging and discharging of the stress generated traps nearby two interfaces. The do component was caused by trap assisted tunneling completely through the oxide. The low level leakage current was proportional to the number of traps generated in the oxides. The low level leakage current may be a trap charging and discharging current. The low level leakage current will affect data retention in EEPROM.

  • PDF

Experimental Characteristics Examination of a Hybrid-Type Supercapacitor (하이브리드형 슈퍼커패시터의 실험적 특성 규명)

  • Jeong, Kyuwon;Shin, Jaeyoul
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.4
    • /
    • pp.307-311
    • /
    • 2016
  • Several types of supercapacitors have been developed for energy storage systems. Among them, the hybrid type has advantages such as a large capacitance per weight compared with the electric double-layer capacitator type. In this study, constant current charging and discharging tests were conducted for recently developed hybrid-type supercapacitors. Based on the experimental results, the capacitance and equivalent series resistance were obtained. The capacitance was larger than the designed capacitance at a low current but became small at a high current. In addition, the capacitance depended on the cell voltage. These results can be used to design an energy storage system.

Steady-State Characteristics of Resonant Switched Capacitor Converters

  • Shoyama Masahito;Deriha Fumitoshi;Ninomiya Tamotsu
    • Journal of Power Electronics
    • /
    • v.5 no.3
    • /
    • pp.206-211
    • /
    • 2005
  • Conventional switched capacitor converters have an inherent drawback that their efficiency decreases as the output current increases. This inherent drawback is due to a periodical forced charging and discharging operation in the internal switched capacitors accompanied by a large capacitor current. Their efficiency can not be increased by decreasing its internal resistance. As a result, conventional switched capacitor converters have been limited to uses with a very small output current. To solve this problem we presented a novel switched capacitor converter topology that uses a resonant operation instead of the forced charging and discharging operation. Its advantage over a conventional switched capacitor converter is higher efficiency even in a high output current region. In this paper, the operation analysis and steady-state characteristics are described in detail for a half buck type switched capacitor converter, and they are confirmed by experimentation.

The Change of Microstructures According to the Charging Amounts of Hydrogen in High Strength DP Steels and TRIP Steel (고강도 DP강과 TRIP강의 표면 수소 주입량에 따른 수소취성평가)

  • Lee, Chul-Chi;Park, Jae-Woo;Kang, Kae-Myung
    • Journal of Surface Science and Engineering
    • /
    • v.45 no.3
    • /
    • pp.130-135
    • /
    • 2012
  • Hydrogen charging was electrochemically conducted at high strength DP steels and TRIP steel with varying charging time. The penetration depths and the mechanical properties with charging conditions were investigated through the distribution of micro-hardness and the microstructural observation of the subsurface zone. The micro-Vickers hardness was measured to evaluate the hydrogen embrittlement of subsurface zone in addition to the microscope investigation. It was shown that the hydrogen amounts decreased in DP steels and TRIP steel with increasing hydrogen charging time. As shown by micro-Vickers hardness test and small punch test results, micro-Vickers hardness and SP energy for DP steels and TRIP steel decreased with increasing hydrogen charging time, for constant value of charging current density. SEM investigation results for the hydrogen contained samples showed that the major fracture behavior was brittle fracture which results in dimples on fractured surface and the size of dimples were decreased with increasing hydrogen charging time. These results indicate that hydrogen embrittlement is the major cause for the fracture of high strength steels and also micro-Vickers hardness test and small punch test is a valuable test method for hydrogen embrittlement of high strength sheet steels.

Smart EVs Charging Scheme for Load Leveling Considering ToU Price and Actual Data

  • Kim, Jun-Hyeok;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • With the current global need for eco-friendly energies, the large scale use of Electric Vehicles (EVs) is predicted. However, the need to frequently charge EVs to an electrical power system involves risks such as rapid increase of demand power. Therefore, in this paper, we propose a practical smart EV charging scheme considering a Time-of-Use (ToU) price to prevent the rapid increase of demand power and provide load leveling function. For a more practical analysis, we conduct simulations based on the actual distribution system and driving patterns in the Republic of Korea. Results show that the proposed method provides a proper load leveling function while preventing a rapid increase of demand power of the system.

Pulsed Corona Charging Characteristics of Aqueous Pesticide Spray (펄스 코로나 농약산포장치의 분무대전 특성)

  • 문재덕;이운태;배창환;권남열
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.9
    • /
    • pp.388-394
    • /
    • 2003
  • Many toxic pesticides as aqueous-base sprays are dispensed for protection of food crops from pests into farm fields. When dispensed with conventional nozzles, a large portion of the spray is often lost by airborne drifts of droplets away and lack of deposition onto the plants due to rapid gravitational settling of droplets to the soil beneath. And target deposition efficiencies poorer than 20% are often encountered in agricultural pesticides. An electrostatic spraying technology offers a very favorable means to increasing pesticides droplets deposition onto biological surfaces of living crops. In this paper a corona type spray nozzle, utilizing a set of corona charging devices and a pulsed droplet-charging voltage applied, has been proposed and tested its potential experimentally. As a result, it exhibits a large current deposition of aqueous pesticide sprays on the sensing target, which, however, promise to be as one of the effective electrostatic spraying nozzle.