• Title/Summary/Keyword: charge-discharge rate

Search Result 266, Processing Time 0.021 seconds

Characteristics of Unipolar Charging of the Submicron Particles by the Condensation-Evaporation Method (응축 증발법을 통한 서브마이크론 입자의 단극하전 특성)

  • Choi, Young-Joo;Kim, Sang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.186-192
    • /
    • 2006
  • We applied a new charging system using the condensation and evaporation method to charge the submicron particles with a uniform charging performance. The monodispersed NaCl submicron particles were condensed by n-butanol vapor and grew up to micron droplets with a same size, regardless of their initial size. Those condensed droplets were charged in an indirect corona charger. The indirect corona charger consisted of the ion generation zone and the particle charging zone. In the ion generation zone, Ions were generated by corona discharge and some of them moved into the particle charging zone by a carrier gas and mixed with the condensed droplet. And finally, the charged and condensed droplets dried through an evaporator to shrink to their original size. The average charge and penetration rate of the particles before and after evaporation were measured by CPC and aerosol electrometer and compared with those of a conventional corona charger. The results showed that the average charge was $5\~7$ charges and the penetration rate was over $90\%$, regardless of the initial particle size.

Battery Sensitivity Analysis on Initial Sizing of eVTOL Aircraft (전기 추진 수직이착륙기의 초기 사이징에 대한 배터리 민감도 분석)

  • Park, Minjun;Choi, Jou-Young Jason;Park, Se Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.12
    • /
    • pp.819-828
    • /
    • 2022
  • Sensitivity of aircraft sizing depending on battery performance was studied for a generic quad tilt rotor type electric vertical takeoff and landing vehicle. The mission requirements proposed by Uber Elevate and NASA were used for initial sizing, and the calculated gross weight is ranged between 5,000lb and 11,000lb for battery specific energy range of 200-400Wh/kg in pack level and continuous discharge rate range of 4-5C. For the assumed gross weight of 7,000lb, the required battery performance was calculated with two different criteria: available power and energy, and the effects of battery specific energy and discharge rate are analyzed. The maximum discharge rate is also recommended considering failure cases such as one battery pack inoperative and one prop rotor inoperative.

Electrochemical Characteristics of $LaNi_5$ Electrode Fabricated by Ni and Cu Electroless Plating Techniques (Ni 및 Cu무전해 도금법에 의해 제조한 $LaNi_5$ 전극의 전기화학적 특성)

  • Yi Su Youl;Lee Jae-Bong
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.2
    • /
    • pp.121-126
    • /
    • 2000
  • The effect of electroless Ni and Cu plating on $LaNi_5$, $AB_5$ type hydrogen storage alloy was investigated by the various electrochemical techniques such as constant current charge-discharge test, cyclic voltammeoy, and a.c. impedance spectroscopy. Scanning electron microscopy and X-ray diffraction test were conducted for phenomenological logical analyses. Cyclic Voltammetry results show that activation characteristics, cycle life and reaction ,rate were improved through electroless Ni and Cu plating. Compared with bare $LaNi_5$ the charge transfer resistance of electrode was greatly reduced as charge-discharge cycle increases. Therefore, electroless Ni and Cu plating on $LaNi_5$ alloy tends to accelerate the early activation, increasing the cyclic lift of electrode.

Improved Load Sharing Rate in Paralleled Operated Lead Acid Batteries (납 축전지의 병렬운전시 부하분담률 개선)

  • 반한식;최규하
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.34-42
    • /
    • 2001
  • A battery is the device that transforms the chemical energy into the direct-current electrical energy directly without a mechanical process. Unit cells are connected in series to obtain the required voltage, while being connected in parallel to organize capacity for load current and to decrease the internal resistance for corresponding the sudden shift of the load current. Because the voltage droop down in one set of battery is faster than in tow one, it amy result in the low efficiency of power converter with the voltage drop and cause the system shutdown. However, when the system being driven in parallel, a circular-current can be generated. The changing current differs in each set of battery because the system including batteries, rectifiers and loads is connected in parallel and it makes the charge voltage constant. It is shown that, as a result the new batteries are heated by over-charge and over-discharge, and the over charge current increases rust of the positive grid and consequently shortens the lifetime of the new batteries. The difference between the new batteries and old ones is the amount of internal resistance. In this paper, we can detect the unbalance current using the micro-processor and achieve the balance current by adjusting resistance of each set. The internal resistance of each set becomes constant and the current of charge and discharge comes to be balanced by inserting the external resistance into the system and calculating the change of internal resistance.

  • PDF

Synthesis and Characterizations of Mn1+XCo2-XO4 Solid Solution Catalysts for Highly Efficient Li/Air Secondary Battery (고효율의 리튬/공기 이차전지 공기전극용 Mn1+XCo2-XO4 고용체 촉매 합성 및 분석)

  • Park, Inyeong;Jang, Jaeyong;Lim, Dongwook;Kim, Taewoo;Shim, Sang Eun;Park, Seok Hoon;Baeck, Sung-Hyeon
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.4
    • /
    • pp.137-142
    • /
    • 2015
  • $Mn_{1+X}Co_{2-X}O_4$ solid solutions with various Mn/Co ratios were synthesized by a combustion method, and used as cathode catalysts for lithium/air secondary battery. Their electrochemical and physicochemical properties were investigated. The morphology was examined by transmission electron microscopy (TEM), and the crystallinity was confirmed by X-ray diffraction (XRD) analyses. For the measurement of electrochemical properties, charge and discharge measurements were carried out at a constant current density of $0.2mA/cm^2$, monitoring the voltage change. Electrochemical impedance spectroscopy (EIS) analyses were also employed to examine the change in charge transfer resistance during charge-discharge process. $Mn_{1+X}Co_{2-X}O_4$ solid solutions showed enhanced cycleability as a cathode of Li/air secondary battery, and the performance was found to be strongly dependent on Mn/Co ratio. Among synthesized catalysts, $Mn_{1.5}Co_{1.5}O_4$ exhibited the best performance and cycleability, due to high charge transfer rate.

Electrochemical Properties of Li[Ni0.2Li0.2Mn0.6]O2 by Microwave-assisted Sol-gel Method

  • Park, Yong-Joon;Kim, Seuk-Buom
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.3
    • /
    • pp.102-105
    • /
    • 2009
  • $Li[Ni_{0.2}Li_{0.2}Mn_{0.6}]O_2$ cathode materials have been synthesized by a microwave-assisted sol-gel method. The structure and electrochemical properties of $Li[Ni_{0.2}Li_{0.2}Mn_{0.6}]O_2$ were studied by X-ray difftactometry (XRD), scanning electron microscopy (SEM) and charge-discharge cycler. The powder prepared by microwave assisted sol-gel method showed good crystallinity and well-defined facet shapes. The $Li[Ni_{0.2}Li_{0.2}Mn_{0.6}]O_2$ electrode delivered a high discharge capacity of 230 $mAhg^{-1}$ at the specific current of 40 $mAg^{-1}$ (0.2 C rate) in the voltage range of 2.0${\sim}$4.8 V. About 60 % of the discharge capacity measured at 0.2 Crate (140 $mAhg^{-1}$) was maintained at a 6 C (1200 $mAg^{-1}$)rate. The cyclic property was also stable and it did not deteriorated at a high Crate.

Charge/discharge characteristics of $LiCoO_2$ thin film prepared by electron-beam evaporation with deposition rate and annealing temperatures (Electron-beam 증발법으로부터 증착속도 및 열처리 온도에 따른 $LiCoO_2$ 박막의 충방전 특성)

  • Nam S. C.;Cho W. I.;Cho B. W.;Yun K. S.;Chun H. S.
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.1
    • /
    • pp.46-49
    • /
    • 1999
  • Lithium cobalt oxide cathode for thin-film rechargeable lithium batteries were fablicated by electron-beam evaporation. Annealed lithium cobalt oxide, which was deposited on to stainless steel substrate, showed well-developed (003) planes of the hexagonal structure and potential plateau at $\~3.9 V$. Lithium cobalt oxide thin films had the stoichiometric Li/co ratio at high deposition rates and exhibited high discharge capacity at $15{\AA}/s$. As the annealing temperature increased, discharge capacity increased with maximum value at $700^{\circ}C$, but showed low capacity as a result of reaction with substrate above $700^{\circ}C$. Unuiformity of the lithium and cobalt in the depth profile gave initial capacity loss with charge/discharge performance.

Parallel Load Techinques Application for Transcranial Magnetic Stimulation

  • Choi, Sun-Seob;Kim, Whi-Young
    • Journal of Magnetics
    • /
    • v.17 no.1
    • /
    • pp.27-32
    • /
    • 2012
  • Transcranial magnetic stimulation requires an electric field composed of dozens of V/m to achieve stimulation. The stimulation system is composed of a stimulation coil to form the electric field by charging and discharging a capacitor in order to save energy, thus requiring high-pressure kV. In particular, it is charged and discharged in capacitor to discharge through stimulation coil within a short period of time (hundreds of seconds) to generate current of numerous kA. A pulse-type magnetic field is formed, and eddy currents within the human body are triggered to achieve stimulation. Numerous pulse forms must be generated to initiate eddy currents for stimulating nerves. This study achieved high internal pressure, a high number of repetitions, and rapid switching of elements, and it implemented numerous control techniques via introduction of the half-bridge parallel load method. In addition it applied a quick, accurate, high-efficiency charge/discharge method for transcranial magnetic stimulation to substitute an inexpensive, readily available, commercial frequency condenser for a previously used, expensive, high-frequency condenser. Furthermore, the pulse repetition rate was altered to control energy density, and grafts compact, one-chip processor with simulation to stably control circuit motion and conduct research on motion and output characteristics.

The Study on Thermal Modeling and Charge Capacity Estimation for Lithium Secondary Battery (리튬 2차 전지의 열적 모델링 및 용량 예측에 관한 연구)

  • Kim, Jong-Won;Cho, Hyun-Chan;Kim, Kwang-Sun;Jo, Jang-Gun;Lee, Jung-Su;Hu, Bin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.1 s.18
    • /
    • pp.53-57
    • /
    • 2007
  • In this paper, the intelligent estimation algorithm is developed for residual quantity estimate of lithium secondary cell and we suggest the control algorithm to get battery SOC through thermal modeling of electric cell. Lithium secondary cell gives cycle life, charge characteristic, discharge characteristic, temperature characteristic, self-discharge characteristic and the capacity recovery rate etc. Therefore, we make an accurate estimate of the capacity of battery according to thermal modeling to know the capacity of electric cell that is decreased by various special quality of lithium secondary cell. And we show effectiveness through comparison of value as result that use simulation and fuzzy logic.

  • PDF

Industry safety characteristic of Prismatic EDLCs (각형 전기이중층 커패시터의 산업 안전성)

  • 김경민;장인영;강안수
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2004.05a
    • /
    • pp.247-257
    • /
    • 2004
  • Electrodes were fabricated based on activated carbon powder BP-20, conducting agent such as Super P, vapor grown carbon fiber (VGCF) and acetylene black (AB), and the mixed binders of flexible poly(vinylidenefluoridehexafluoropropylene) [P(VdF-co-HFP)] and cross linking dispersion agent of polyvinylpyrrolidone (PVP) to increase mechanical strength. According to impedance measurement of the electrode with the addition of conducting agent, we found that it was possible to charge rapidly by the fast steady-state current convergence due to low equivalent series resistance (AC-ESR, fast charge transfer rate at interface between electrode and electrolyte and low RC time constant. The self-discharge of unit cell showed that diffusion process was controlled by the ion concentration difference of initial electrolyte due to the characteristics of Electric Double Layer Capacitor (EDLC) charged by ion adsorption in the beginning, but this by current leakage through the double-layer at the electrode/electrolyte interface had a minor effect and voltages of curves were remained constant regardless of electrode material. We found that the 2.3V/230F grade EDLC would be applied to industrial safety usage such as uninterrupted power supply (UPS) because of the constant DC-ESR by IR drop regardless of discharge current.

  • PDF