• Title/Summary/Keyword: charge movement

Search Result 113, Processing Time 0.189 seconds

Reliability Analysis by Lateral Charge Migration in Charge Trapping Layer of SONOS NAND Flash Memory Devices (SONOS NAND 플래시 메모리 소자에서의 Lateral Charge Migration에 의한 소자 안정성 연구)

  • Sung, Jae Young;Jeong, Jun Kyo;Lee, Ga Won
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.138-142
    • /
    • 2019
  • As the NAND flash memory goes to 3D vertical Silicon-Oxide-Nitride-Oxide-Silicon (SONOS) structure, the lateral charge migration can be critical in the reliability performance. Even more, with miniaturization of flash memory cell device, just a little movement of trapped charge can cause reliability problems. In this paper, we propose a method of predicting the trapped charge profile in the retention mode. Charge diffusivity in the charge trapping layer (Si3N4) was extracted experimentally, and the effect on the trapped charge profile was demonstrated by the simulation and experiment.

Diesel Knock Visualization of Premixed Charge Compression Ignition Combustion with a Narrow Injection Angle (협각 인젝터를 이용한 예혼합 압축착화 연소에서의 디젤 노킹 가시화)

  • Park, Stephen S.;Jung, Yongjin;Bae, Choongsik
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.101-104
    • /
    • 2012
  • In this work, in-cylinder pressure measurements and high-speed direct imaging of the flame were performed in an optically accessible single cylinder diesel engine with premixed charge compression ignition combustion and a narrow injection angle. The results show that the frequency ranges of pressure ringing were 8.35 to 9 kHz and 12..2 to 13.1 kHz. The frequencies of the flame movement were shown as 8.7 kHz and 13 kHz. It was found that there is a direct relationship between the pressure ringing and the flame movement.

  • PDF

Determination of the Depletion Depth of the Deep Depletion Charge-Coupled Devices

  • Kim Man-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.233-236
    • /
    • 2006
  • A 3-D numerical simulation of a buried-channel CCD (Charge Coupled Device) with a deep depletion has been performed to investigate its electrical and physical behaviors. Results are presented for a deep depletion CCD (EEV CCD12; JET-X CCD) fabricated on a high-resistivity $(1.5k\Omega-cm)\;65{\mu}m$ thick epi-layer, on a $550{\mu}m$ thick p+ substrate, which is optimized for X-ray detection. Accurate predictions of the Potential minimum and barrier height of a CCD Pixel as a function of mobile electrons are found to give good charge transfer. The depletion depth approximation as a function of gate and substrate bias voltage provided average errors of less than 6%, compared with the results estimated from X-ray detection efficiency measurements. The result obtained from the transient simulation of signal charge movement is also presented based on 3-Dimensional analysis.

Detection of AGV's position and orientation using laser slit beam (회전 Laser 슬릿 빔을 이용한 AGV의 위치 및 자세의 검출)

  • 박건국;김선호;박경택;안중환
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.219-225
    • /
    • 2000
  • The major movement block of the containers have range between apron and designation points on yard in container terminal. The yard tractor operated by human takes charge of its movement in conventional container terminal. In automated container terminal, AGV(Automated Guided Vehicle) has charge of the yard tractor's role and the navigation path is ordered from upper level control system. The automated container terminal facilities must have the docking system to guide landing line to have high speed travelling and precision positioning. The general method for docking system uses the vision system with CCD camera, infra red, and laser. This paper describes the detection of AGV's position and orientation using laser slit beam to develop docking system.

  • PDF

Development of docking system using laste slit beam (LSB를 이용한 Docking System 개발)

  • 김선호;박경택;최성락;변성태;이영석
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1999.10a
    • /
    • pp.309-314
    • /
    • 1999
  • The major movement block of the containers is range between apron and designation points on yard in container terminal. The yard tractor operated by human takes charge of it's movement in conventional container terminal. In unmanned container terminal, UCT(unmanned container transporter) has charge of the yard tractor's role and the navigation path is ordered from upper level control system. The unmanned container terminal facilities must have docking system that guided landing line to have high speed travelling and precision positioning in unmanned container terminal. The general method for docking uses the vision system with CCD camera, infra red, and laser. This paper describes the investigation for the developed docking method in view point of merit and demerit and introduces 속 result of developing the docking system with LSB(laser slit beam).

  • PDF

Oil Movement Control by Charge Density Control in the Electrowetting Display (하전입자의 분포에 따른 Electrowetting display의 오일의 움직임)

  • Kim, Tae-Hyun;Kim, Yeon-Sik;Ashanulhaq, Q.;Jeong, Eun;Hahn, Yoon-Bong;Lee, Seung-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.495-496
    • /
    • 2006
  • Electrowetting phenomenon is applied in the various field of technology. One of that is electrowetting display as a paper like electronic paper. Fast response and easy to express a color is goodness. In spite of that, the oil movement of the electrowetting display is irregular. So it doesn't look like uniform. Because of above reason, electrowetting display using patterned electrode is made and the characteristic of oil movement is observed. Electrode and polymer wall is patterned by photo-lithography. We analyze the oil movement according to the variation of size and the position of etched electrode area.

  • PDF

Conduction Mechanism of Charge Carriers in Electrodes and Design Factors for the Improvement of Charge Conduction in Li-ion Batteries

  • Akhtar, Sophia;Lee, Wontae;Kim, Minji;Park, Min-Sik;Yoon, Won-Sub
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.1-20
    • /
    • 2021
  • In-depth knowledge of electrode processes is crucial for determining the electrochemical performance of lithium-ion batteries (LIBs). In particular, the conduction mechanisms of charged species in the electrodes, such as lithium ions (Li+) and electrons, are directly correlated with the performance of the battery because the overall reaction is dependent on the charge transport behavior in the electrodes. Therefore, it is necessary to understand the different electrochemical processes occurring in electrodes in order to elucidate the charge conduction phenomenon. Thus, it is essential to conduct fundamental studies on electrochemical processes to resolve the technical challenges and issues arising during the ionic and electronic conduction. Furthermore, it is also necessary to understand the transport of charged species as well as the predominant factors affecting their transport in electrodes. Based on such in-depth studies, potential approaches can be introduced to enhance the mobility of charged entities, thereby achieving superior battery performances. A clear understanding of the conduction mechanism inside electrodes can help overcome challenges associated with the rapid movement of charged species and provide a practical guideline for the development of advanced materials suitable for high-performance LIBs.

An Analysis of Reflectivity and Response Time by Charge-to-Mass of Charged Particles in an Electrophoretic Display

  • Kim, Young-Cho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.4
    • /
    • pp.212-216
    • /
    • 2016
  • A reflective electronic display that uses negatively and positively charged particles has excellent bistability, a welldefined threshold voltage, and an extremely fast response time in comparison with other reflective displays. This type of display shows images through the movement of charged particles whose motion depends on the value of q/m (charge per mass for a particle). However, the ratio q/m can easily be changed by the forces acting on the charged particles in a cell of the panel and by friction that occurs after mixing oppositely charged particles and in the particle-insertion process. In this study, we propose a method to determine the appropriate range of q/m by using the reflectivity and response time of charged particles to modify q/m. In this manner, the electrical and optical properties of reflective displays are improved.

Movement Intention Detection of Human Body Based on Electromyographic Signal Analysis Using Fuzzy C-Means Clustering Algorithm (인체의 동작의도 판별을 위한 퍼지 C-평균 클러스터링 기반의 근전도 신호처리 알고리즘)

  • Park, Kiwon;Hwang, Gun-Young
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.1
    • /
    • pp.68-79
    • /
    • 2016
  • Electromyographic (EMG) signals have been widely used as motion commands of prosthetic arms. Although EMG signals contain meaningful information including the movement intentions of human body, it is difficult to predict the subject's motion by analyzing EMG signals in real-time due to the difficulties in extracting motion information from the signals including a lot of noises inherently. In this paper, four Ag/AgCl electrodes are placed on the surface of the subject's major muscles which are in charge of four upper arm movements (wrist flexion, wrist extension, ulnar deviation, finger flexion) to measure EMG signals corresponding to the movements. The measured signals are sampled using DAQ module and clustered sequentially. The Fuzzy C-Means (FCMs) method calculates the center values of the clustered data group. The fuzzy system designed to detect the upper arm movement intention utilizing the center values as input signals shows about 90% success in classifying the movement intentions.

Detection of Moving Position of AGV Using Rotating LSB(Laser Slit Beam) (회전 레이져 슬릿 빔을 이용한 AGV 이동위치 검출)

  • Kim, Seon-Ho;Park, Gyeong-Taek;Park, Geon-Guk;An, Jung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.137-144
    • /
    • 2001
  • The major movement blocks of the container are the range between the apron and the designation points on yard in container terminals. The yard tractor drived by operator takes charge of it's movement in conventional container terminals. In automated container terminal, AGV(automatic guided vehicle) takes charge of a yard tractor's role and information of navigation path are ordered from upper control system. The automated container terminal facilities must have the docking system that guides landing zinc to execute high speed travelling and precision positioning. This paper describes the new docking method with the rotating LSB(laser slit beam) generator and two pair of photo receiver. The LSB generator is installed on the fixed ground and the photo receiver is implemented on the moving vehicle such as AGV. The proposed docking system is implemented to confirm it's function and accuracy. The accuracy of measured moving position is represented in ±5mm at 1 data sampling.

  • PDF