• Title/Summary/Keyword: charge detector

Search Result 201, Processing Time 0.024 seconds

Calculation of Primary Electron Collection Efficiency in Gas Electron Multipliers Based on 3D Finite Element Analysis (3차원 유한요소해석을 이용한 기체전자증폭기의 1차 전자수집효율의 계산)

  • Kim, Ho-Kyung;Cho, Min-Kook;Cheong, Min-Ho;Shon, Cheol-Soon;Hwang, Sung-Jin;Ko, Jong-Soo;Cho, Hyo-Sung
    • Journal of Radiation Protection and Research
    • /
    • v.30 no.2
    • /
    • pp.69-75
    • /
    • 2005
  • Gas avalanche microdetectors, such as micro-strip gas chamber (MSGC), micro-gap chamber (MGC), micro-dot chamber (MDOT), etc., are operated under high voltage to induce large electron avalanche signal around micro-size anodes. Therefore, the anodes are highly exposed to electrical damage, for example, sparking because of the interaction between high electric field strength and charge multiplication around the anodes. Gas electron multiplier (GEM) is a charge preamplifying device in which charge multiplication can be confined, so that it makes that the charge multiplication region can be separate from the readout micro-anodes in 9as avalanche microdetectors possible. Primary electron collection efficiency is an important measure for the GEM performance. We have defined that the primary electron collection efficiency is the fractional number of electron trajectories reaching to the collection plane from the drift plane through the GEM holes. The electron trajectories were estimated based on 3-dimensional (3D) finite element method (FEM). In this paper, we present the primary electron collection efficiency with respect to various GEM operation parameters. This simulation work will be very useful for the better design of the GEM.

A Study On Development of Fast Image Detector System (고속 영상 검지기 시스템 개발에 관한 연구)

  • Kim Byung Chul;Ha Dong Mun;Kim Yong Deak
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.1
    • /
    • pp.25-32
    • /
    • 2004
  • Nowadays image processing is very useful for some field of traffic applications. The one reason is we can construct the system in a low price, the other is the improvement of hardware processing power, it can be more fast to processing the data. In traffic field, the development of image using system is interesting issue. Because it has the advantage of price of installation and it does not obstruct traffic during the installation. In this study, 1 propose the traffic monitoring system that implement on the embedded system environment. The whole system consists of two main part, one is host controller board, the other is image processing board. The part of host controller board take charge of control the total system interface of external environment, and OSD(On screen display). The part of image processing board takes charge of image input and output using video encoder and decoder, Image classification and memory control of using FPGA, control of mouse signal. And finally, for stable operation of host controller board, uC/OS-II operating system is ported on the board.

The Response Characteristics of as Addition Ratio of Arsenic in $CaWO_4/a-Se$ based X-ray Conversion Sensor ($CaWO_4/a-Se$ 구조의 X선 변환센서에서 a-Se의 Arsenic 첨가량에 따른 반응 특성)

  • Kang, Sang-Sik;Suk, Dae-Woo;Cho, Sung-Ho;Kim, Jae-Hyung;Nam, Namg-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.416-419
    • /
    • 2002
  • There are being two prominent studying for Digital Radiography. Direct and Indirect method of Digital Radiography are announced for producing high quality digital image. The one is using amorphous selenium as photoconductor and the other is using phosphor layer as a light conversion. But each two systems have strength and weakness such as high voltage and blurring effect. In this study, we investigated the electrical characteristic of $multi-layer\left(CaWO_{4}+a-Se \right)$ as a photoconductor according to the changing arsenic composition ratio. This is a basic research for developing of Hybrid digital radiography which is a new type X-ray detector. The arsenic composition ratio of a-Se compound is classified into 7 different kinds which have 0.1%, 0.3%, 0.5%, 1%, 1.5%, 5%, 10% and were made test sample throught thermo-evaporation. The phosphor layer of $CaWO_4$ was overlapped on a-Se using EFIRON optical adhesives. We measured the dark and photo current about the test sample and compared the electrical characteristic of the net charge and signal-to-noise ratio. Among other things, test sample of compound material of 0.3% arsenic showed good characteristic of $2.45nA/cm^2$ dark current and $357.19pC/cm^2/mR$ net charge at $3V/{\mu}m$.

  • PDF

I-Q Channel 12bit 1GS/s CMOS DAC for WCDMA (WCDMA 통신용 I-Q 채널 12비트 1GS/s CMOS DAC)

  • Seo, Sung-Uk;Shin, Sun-Hwa;Joo, Chan-Yang;Kim, Soo-Jae;Yoon, Kwang-S.
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.1
    • /
    • pp.56-63
    • /
    • 2008
  • This paper describes a 12 bit 1GS/s current mode segmented DAC for WCDMA communication. The proposed circuit in this paper employes segmented structure which consists of 4bit binary weighted structure in the LSB and 4bit thermometer decoder structure in the mSB and MSB. The proposed DAC uses delay time compensation circuits in order to suppress performance decline by delay time in segmented structure. The delay time compensation circuit comprises of phase frequency detector, charge pump, and control circuits, so that suppress delay time by binary weighted structure and thermometer decoder structure. The proposed DAC uses CMOS $0.18{\mu}m$ 1-poly 6-metal n-well process, and measured INL/DNL are below ${\pm}0.93LSB/{\pm}0.62LSB$. SFDR is approximately 60dB and SNDR is 51dB at 1MHz input frequency. Single DAC's power consumption is 46.2mW.

Study on the Physical Properties of the Gamma Beam-Irradiated Teflon-FEP and PET Film (Teflon-FEP 와 PET Film 의 감마선 조사에 따른 물리적 특성에 관한 연구)

  • 김성훈;김영진;이명자;전하정;이병용
    • Progress in Medical Physics
    • /
    • v.9 no.1
    • /
    • pp.11-21
    • /
    • 1998
  • Circular metal electrodes were vacuum-deposited with chromium on the both sides of Teflon-FEP and PET film characteristic of electret and the physical properties of the two polymers were observed during an irradiation by gamma-ray from $\^$60/Co. With the onset of irradiation of output 25.0 cGy/min the induced current increased rapidly for 2 sec, reached a maximum, and subsequently decreased. A steady-state induced current was reached about in 60 second. The dielectric constant and conductivity of Teflon-FEP were changed from 2.15 to 18.0 and from l${\times}$l0$\^$-17/ to 1.57${\times}$10$\^$-13/ $\Omega$-$\^$-1/cm$\^$-1/, respectively. For PET the dielectric constant was changed from 3 to 18.3 and the conductivity from 10$\^$-17/ to 1.65${\times}$10$\^$-13/ $\Omega$-$\^$-1/cm$\^$-1/. The increase of the radiation-induced steady state current I$\^$c/, permittivity $\varepsilon$ and conductivity $\sigma$ with output(4.0 cGy/min, 8.5 cGy/min, 15.6 cGy/min, 19.3 cGy/min) was observed. A series of independent measurements were also performed to evaluate reproducibility and revealed less than 1% deviation in a day and 3% deviation in a long term. Charge and current showed the dependence on the interval between measurements, the smaller the interval was, the bigger the difference between initial reading and next reading was. At least in 20 minutes of next reading reached an initial value. It may indicate that the polymers were exhibiting an electret state for a while. These results can be explained by the internal polarization associated with the production of electron-hole pairs by secondary electrons, the change of conductivity and the equilibrium due to recombination etc. Heating to the sample made the reading value increase in a short time, it may be interpreted that the internal polarization was released due to heating and it contributed the number of charge carriers to increase when the samples was again irradiated. The linearity and reproducibility of the samples with the applied voltage and absorbed dose and a large amount of charge measured per unit volume compared with the other chambers give the feasibility of a radiation detector and make it possible to reduce the volume of a detector.

  • PDF

Fabrication and Characterization of Lead Oxide (PbO) Film for High Efficiency X-ray Detector (고효율 X선 검출기 적용을 위한 PbO 필름 제작 및 특성 연구)

  • Cho, Sung-Ho;Kang, Sang-Sik;Choi, Chi-Won;Kwun, Chul;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.329-329
    • /
    • 2007
  • Photoconductive poly crystalline lead oxide coated on amorphous thin film transistor (TFT) arrays is the best candidate for direct digital x-ray detector for medical imaging. Thicker films with lessening density often show lower x-ray induced charge generation and collection becomes less efficient. In this work, we present a new methodology used for the high density deposition of PbO. We investigate the structural properties of the films using X-ray diffraction and electron microscopy experiments. The film coatings of approximately $200\;{\mu}m$ thickness were deposited on $2"{\times}2"$ conductive-coated glass substrates for measurements of dark current and x-ray sensitivity. The lead oxide (PbO) films of $200\;{\mu}m$ thickness were deposited on glass substrates using a wet coating process in room temperature. The influence of post-deposition annealing on the characteristics of the lead oxide films was investigated in detail. X-ray diffraction and scanning electron microscopy, and atomic force microscopy have been employed to obtain information on the morphology and crystallization of the films. Also we measured dark current, x-ray sensitivity and linearity for investigation of the electrical characteristics of films. It was found that the annealing conditions strongly affect the electrical properties of the films. The x-ray induced output charges of films annealed in oxygen gas increases dramatically with increasing annealing temperatures up to $500^{\circ}C$ but then drops for higher temperature anneals. Consequently, the more we increase the annealing temperatures, the better density and film quality of the lead oxide. Analysis of this data suggests that incorporation and decomposition reactions of oxygen can be controlled to change the detection properties of the lead oxide film significantly. Post-deposition thermal annealing is also used for densely film. The PbO films that are grown by new methodology exhibit good morphology of high density structure and provide less than $10\;pA/mm^2$ dark currents as they show saturation in gain (at approximate fields of $4\;V/{\mu}m$). The ability to operate at low voltage gives adequate dark currents for most applications and allows voltage electronics designs.

  • PDF

ELA: Real-time Obstacle Avoidance for Autonomous Navigation of Variable Configuration Rescue Robots (ELA: 가변 형상 구조로봇의 자율주행을 위한 실시간 장애물 회피 기법)

  • Jeong, Hae-Kwan;Hyun, Kyung-Hak;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.3
    • /
    • pp.186-193
    • /
    • 2008
  • We propose a novel real-time obstacle avoidance method for rescue robots. This method, named the ELA(Emergency Level Around), permits the detection of unknown obstacles and avoids collisions while simultaneously steering the mobile robot toward safe position. In the ELA, we consider two sensor modules, PSD(Position Sensitive Detector) infrared sensors taking charge of obstacle detection in short distance and LMS(Laser Measurement System) in long distance respectively. Hence if a robot recognizes an obstacle ahead by PSD infrared sensors first, and judges impossibility to overcome the obstacle based on driving mode decision process, the order of priority is transferred to LMS which collects data of radial distance centered on the robot to avoid the confronted obstacle. After gathering radial information, the ELA algorithm estimates emergency level around a robot and generates a polar histogram based on the emergency level to judge where the optimal free space is. Finally, steering angle is determined to guarantee rotation to randomly direction as well as robot width for safe avoidance. Simulation results from wandering in closed local area which includes various obstacles and different conditions demonstrate the power of the ELA.

  • PDF

Removal of Natural Organic Matter (NOM) by Carbon Nanotubes Modified PVDF Membrane (탄소나노튜브(CNT)-PVDF 막을 이용한 자연용존유기물 제거)

  • Cho, Hyun-Hee;Cha, Min-Whan;Park, Jae-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.148-156
    • /
    • 2012
  • In this research, the application of carbon nanotubes (CNTs) modified PVDF (polyvinylidene fluoride) membrane was tested as a simply and beginning attempt to overcome membrane fouling because CNTs importantly affect the transport of natural organic matter (NOM). Suwannee River fulvic acid (SRFA) as the representative of NOM was selected and its sorption results with single-walled CNT (SWCNT), multi-walled CNT (MWCNT), and oxidized MWCNT (O-MWCNT) were obtained through the batch experiment. SRFA sorption isotherms had a strong nonlinearity and its sorption capacity followed the order O-MWCNT < MWCNT < SWCNT. The adsorbed mass of SRFA on each CNT decreased as a function of pH due to their charge repulsion. For the CNT-PVDF membrane filtration experiments, the suspended CNT solution (10 mg/40 mL) was incorporated into $0.45{\mu}m$-PVDF membrane and 5 mg/L of SRFA solution was monitored using UV detector connected with high pressure pump after passing through CNT-PVDF membrane. The SRFA removal efficiency by MWCNT-PVDF membrane was the strongest among other modified membranes. This suggests that the CNT modified microfiltration (MF) membrane might effectively and selectively apply to treat the contaminated water including organic compounds in the presence of NOM.

NON-UNIFORMITY CORRECTION- SYSTEM ANALYSIS FOR MULTI-SPECTRAL CAMERA

  • Park Jong-Euk;Kong Jong-Pil;Heo Haeng-Pal;Kim Young Sun;Chang Young Jun
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.478-481
    • /
    • 2005
  • The PMU (Payload Management Unit) is the main subsystem for the management, control and power supply of the MSC (Multi-Spectral Camera) Payload operation. It is the most important function for the electro-optical camera system that performs the Non-Uniformity Correction (NUC) function of the raw imagery data, rearranges the data from the CCD (Charge Coupled Device) detector and output it to the Data Compression and Storage Unit (DCSU). The NUC board in PMU performs it. In this paper, the NUC board system is described in terms of the configuration and the function, the efficiency for non-uniformity correction, and the influence of the data compression upon the peculiar feature of the CCD pixel. The NUC board is an image-processing unit within the PMU that receives video data from the CEV (Camera Electronic Unit) boards via a hotlinkand performs non-uniformity corrections upon the pixels according to commands received from the SBC (Single Board Computer) in the PMU. The lossy compression in DCSU needs the NUC in on-orbit condition.

  • PDF

Development of Image Processing Technology for Interaction between Pantograph and Overhead Contact Wire (팬터그래프-전차선로 접촉부 영상처리 기술 개발)

  • Kim, Hyung-Jun;Park, Young;Cho, Yong-Hyeon;Cho, Chul-Jin;Kim, In-Chol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.12
    • /
    • pp.1084-1088
    • /
    • 2009
  • The measurement of dynamic stagger in electric railways is one of the key test parameters to increase speed and maintain safety in electric railways. This paper is introduces a non-contact optical-based measuring instrument of a catenary system in electric railways. The instrument is implemented by utilizing a CCD (Charge Coupled Device) camera installed on the roof of a vehicle for vision acquisition and image processing techniques including the Canny edge detector and the Hough transform to detect contact wires and calculate dynamic stagger. To check the validity of our approach for the intended application, we measured stagger of a overhead wire of a Korea Tilting Train (TTX). The non-contact optical-based measurement system proposed in this paper performs real-time stagger measurement of an activated high-voltage contact wire. By results of this paper, the instrument should be applied to assess performance and reliability of newly developed electric railway vehicles.