• Title/Summary/Keyword: charge density

Search Result 1,132, Processing Time 0.036 seconds

Trap characteristics of charge trap type NVSM with reoxidized nitrided oxide gate dielectrics (재산화 질화산화 게이트 유전막을 갖는 전하트랩형 비휘발성 기억소자의 트랩특성)

  • 홍순혁;서광열
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.6
    • /
    • pp.304-310
    • /
    • 2002
  • Novel charge trap type memory devices with reoxidized oxynitride gate dielectrics made by NO annealing and reoxidation process of initial oxide on substrate have been fabricated using 0.35 $\mu \textrm{m}$ retrograde twin well CMOS process. The feasibility for application as NVSM memory device and characteristics of traps have been investigated. For the fabrication of gate dielectric, initial oxide layer was grown by wet oxidation at $800^{\circ}C$ and it was reoxidized by wet oxidation at $800^{\circ}C$ after NO annealing to form the nitride layer for charge trap region for 30 minutes at $850^{\circ}C$. The programming conditions are possible in 11 V, 500 $\mu \textrm{s}$ for program and -13 V, 1ms for erase operation. The maximum memory window is 2.28 V. The retention is over 20 years in program state and about 28 hours in erase state, and the endurance is over $3 \times 10^3$P/E cycles. The lateral distributions of interface trap density and memory trap density have been determined by the single junction charge pumping technique. The maximum interface trap density and memory trap density are $4.5 \times 10^{10} \textrm{cm}^2$ and $3.7\times 10^{18}/\textrm{cm}^3$ respectively. After $10^3$ P/E cycles, interlace trap density increases to $2.3\times 10^{12} \textrm{cm}^2$ but memory charges decreases.

Composited Conductive Materials for Enhancing the Ultrafast Performance for Anode in Lithium-Ion Battery (리튬이온전지 음극의 고속 성능 향상을 위한 도전재 복합화)

  • Ki-Wook, Sung;Hyo-Jin, Ahn
    • Korean Journal of Materials Research
    • /
    • v.32 no.11
    • /
    • pp.474-480
    • /
    • 2022
  • Lithium-ion batteries (LIBs) are powerful energy storage devices with several advantages, including high energy density, large voltage window, high cycling stability, and eco-friendliness. However, demand for ultrafast charge/discharge performance is increasing, and many improvements are needed in the electrode which contains the carbon-based active material. Among LIB electrode components, the conductive additive plays an important role, connecting the active materials and enhancing charge transfer within the electrode. This impacts electrical and ionic conductivity, electrical resistance, and the density of the electrode. Therefore, to increase ultrafast cycling performance by enhancing the electrical conductivity and density of the electrode, we complexed Ketjen black and graphene and applied conductive agents. This electrode, with the composite conductive additives, exhibited high electrical conductivity (12.11 S/cm), excellent high-rate performance (28.6 mAh/g at current density of 3,000 mA/g), and great long-term cycling stability at high current density (88.7 % after 500 cycles at current density of 3,000 mA/g). This excellent high-rate performance with cycling stability is attributed to the increased electrical conductivity, due to the increased amount of graphene, which has high intrinsic electrical conductivity, and the high density of the electrode.

Research on Changes in Short Circuit Current of C-Si Solar Cell by Charge Density Waves (전하밀도파 이론으로 결정질 태양전지의 입사각에 따른 단락전류밀도 변화 연구)

  • Seo, Il Won;Koo, Je Huan;Yun, Myoung Soo;Jo, Tae Hoon;Lee, Won Young;Cho, Guang Sup;Kwon, Gi Chung
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.4
    • /
    • pp.218-224
    • /
    • 2013
  • We measure solar currents transformed from quantum efficiency as a function of incident angles of solar lights. According to conventional models for solar cells, solar currents can be induced when electrons are separated into electrons and holes in the presence of incident solar lights. On the contrary, solar currents can be possible at the time when pinned charge density waves go beyond the pinning potential barrier under the influence of incident solar beams suggested by some authors. In this experiment, measured solar currents and our theory are in good correspondence to confirm the angle dependence of solar lights.

Electrochemical Advanced Oxidation of Lamotrigine at Ti/DSA (Ta2O5-Ir2O5) and Stainless Steel Anodes

  • Meena, Vinod Kumar;Ghatak, Himadri Roy
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.292-307
    • /
    • 2022
  • The study presents kinetics of degradation and mineralization of an anti-epileptic drug Lamotrigine (LAM) in the aqueous matrix by electrochemical advanced oxidation process (EAOP) on Ti/DSA (Ta2O5-Ir2O5) and Stainless Steel (SS) anodes using sodium sulphate as supporting electrolyte. On both the anodes, kinetic behaviour was pseudo-first-order for degradation as well as mineralization of LAM. On Ti/DSA anode, maximum LAM degradation of 75.42% was observed at an associated specific charge of 3.1 (Ah/litre) at a current density of 1.38 mA/cm2 and 100 ppm Na2SO4 concentration. Maximum mineralization attained was 44.83% at an associated specific charge of 3.1 (Ah/litre) at a current density of 1.38 mA/cm2 and 50 ppm concentration of Na2SO4 with energy consumption of 2942.71 kWh/kgTOC. Under identical conditions on SS anode, a maximum of 98.92% LAM degradation was marked after a specific charge (Q) of 3.1 (Ah/litre) at a current density of 1.38 mA/cm2 and 100 ppm concentration of Na2SO4. Maximum LAM mineralization on SS anode was 98.53%, marked at a specific charge of 3.1 (Ah/litre) at a current density of 1.38 mA/cm2 and 75 ppm concentration of Na2SO4, with energy consumption of 1312.17 kWh/kgTOC. Higher Mineralization Current Efficiency (MCE) values were attained for EAOP on SS anode for both degradation and mineralization due to occurrence of combined electro-oxidation and electro-coagulation process in comparison to EAOP on Ti/DSA anode due to occurrence of lone electro-oxidation process.

Direct Imaging of Polarization-induced Charge Distribution and Domain Switching using TEM

  • O, Sang-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.99-99
    • /
    • 2013
  • In this talk, I will present two research works in progress, which are: i) mapping of piezoelectric polarization and associated charge density distribution in the heteroepitaxial InGaN/GaN multi-quantum well (MQW) structure of a light emitting diode (LED) by using inline electron holography and ii) in-situ observation of the polarization switching process of an ferroelectric Pb(Zr1-x,Tix)O3 (PZT) thin film capacitor under an applied electric field in transmission electron microscope (TEM). In the first part, I will show that strain as well as total charge density distributions can be mapped quantitatively across all the functional layers constituting a LED, including n-type GaN, InGaN/GaN MQWs, and p-type GaN with sub-nm spatial resolution (~0.8 nm) by using inline electron holography. The experimentally obtained strain maps were verified by comparison with finite element method simulations and confirmed that not only InGaN QWs (2.5 nm in thickness) but also GaN QBs (10 nm in thickness) in the MQW structure are strained complementary to accommodate the lattice misfit strain. Because of this complementary strain of GaN QBs, the strain gradient and also (piezoelectric) polarization gradient across the MQW changes more steeply than expected, resulting in more polarization charge density at the MQW interfaces than the typically expected value from the spontaneous polarization mismatch alone. By quantitative and comparative analysis of the total charge density map with the polarization charge map, we can clarify what extent of the polarization charges are compensated by the electrons supplied from the n-doped GaN QBs. Comparison with the simulated energy band diagrams with various screening parameters show that only 60% of the net polarization charges are compensated by the electrons from the GaN QBs, which results in the internal field of ~2.0 MV cm-1 across each pair of GaN/InGaN of the MQW structure. In the second part of my talk, I will present in-situ observations of the polarization switching process of a planar Ni/PZT/SrRuO3 capacitor using TEM. We observed the preferential, but asymmetric, nucleation and forward growth of switched c-domains at the PZT/electrode interfaces arising from the built-in electric field beneath each interface. The subsequent sideways growth was inhibited by the depolarization field due to the imperfect charge compensation at the counter electrode and preexisting a-domain walls, leading to asymmetric switching. It was found that the preexisting a-domains split into fine a- and c-domains constituting a $90^{\circ}$ stripe domain pattern during the $180^{\circ}$ polarization switching process, revealing that these domains also actively participated in the out-of-plane polarization switching. The real-time observations uncovered the origin of the switching asymmetry and further clarified the importance of charged domain walls and the interfaces with electrodes in the ferroelectric switching processes.

  • PDF

Charge trap characteristics with $Si_3N_4$ tmp layer thickness ($Si_3N_4$ trap layer의 두께에 따른 charge trap 특성)

  • Jung, Myung-Ho;Kim, Kwan-Su;Park, Goon-Ho;Kim, Min-Soo;Jung, Jong-Wan;Jung, Hong-Bae;Cho, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.124-125
    • /
    • 2008
  • The charge trapping and tunnelling characteristics with various thickness of $Si_3N_4$ layer were investigated for application of TBE (Tunnel Barrier Engineered) non-volatile memory. We confirmed that the critical thickness of no charge trapping was existed with decreasing $Si_3N_4$ thickness. Also, the charge trap centroid x and charge trap density were extracted by using CCS (Constant Current Stress) method. Through the optimized thickness of $Si_3N_4$ layer, it can be improve the performance of non-volatile memory.

  • PDF

Sensitivity Analysis of Plasma Charge-up Monitoring Sensor

  • Lee Sung Joon;Soh Dea-Wha;Hong Sang Jeen
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.4
    • /
    • pp.187-190
    • /
    • 2005
  • High aspect ratio via-hole etching process has emerged as one of the most crucial means to increase component density for ULSI devices. Because of charge accumulation in via-hole, this sophisticated and important process still hold several problems, such as etching stop and loading effects during fabrication of integrated circuits. Indeed, the concern actually depends on accumulated charge. For monitoring accumulated charge during plasma etching process, charge-up monitoring sensor was fabricated and tested under some plasma conditions. This paper presents a neural network-based technique for analyzing and modeling several electrical performance of plasma charge-up monitoring sensor.

Sensitivity Analysis of Plasma Charge-up Monitoring Sensor Using Neural Networks

  • Lee, Sung-Joon;Kim, Sun-Phil;Soh, Dae-Wha;Hong, Sang-Jeen
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.303-306
    • /
    • 2005
  • High aspect ration via-hole etching process has emerged as one of the most crucial means to increase component density for ULSI devices. Because of charge accumulation in via hole, this sophisticated and important process still hold several problems, such as etching stop, loading effects during fabrication of integrated circuits. Indeed, the concern actually depends on accumulated charge. For monitoring accumulated charge during plasma etching process, charge-up monitoring sensor was fabricated and tested under some plasma conditions. This paper presents a neural network-based technique for analyzing and modeling several electrical performance of plasma charge-up monitoring sensor.

  • PDF

Charge pumping method를 이용한 MOSFET소자의 Trap분포 연구

  • Kim, Sun-Gon;Choe, Byeong-Deok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.216.2-216.2
    • /
    • 2015
  • 본 연구에서는 charge pumping method에서 사용되는 변수들의 변화를 이용하여 hot carrier stress가 MOSFET소자의 oxide내에서의 trap 분포에 어떤 영향을 미치는지에 대해서 연구하였다. trap 분포를 확인하기 위해 스트레스 전 후에 reverse bias와 주파수에 따른 trap의 양을 측정 하였다. 스트레스 전과 후에 reverse bias와 주파수가 감소할수록 trap이 증가하는 모습이 나타났고, 스트레스 후에는 전과 비교하여 전반적으로 trap의 양이 증가하였다. 또한, 스트레스 전과 후에 MOSFET소자의 trap density는 center region에서 $2.89{\times}$10^10에서 $1.64{\times}$10^10으로 감소하였고, drain region에서 $2.83{\times}$10^10에서 $5.26{\times}$10^10으로 증가한 것을 확인하였다. 이는 reverse bias와 주파수의 가변에 따라서 trap의 공간적 분포를 측정할 수 있다는 것을 의미한다.

  • PDF

A Study on Dispersed Media Formation of Hydrocarbon Fuel by an Explosive Burster (화약 폭발에 의한 탄화수소계 연료의 분산매질 형성에 관한 연구)

  • Yoo, Jae Hun
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.2
    • /
    • pp.33-40
    • /
    • 2016
  • Liquid fuel can be easily exploded and release more energy of detonation than conventional explosives because it has different explosion mechanism. In order to analyze dispersion characteristics of liquid fuel for the safety purpose, two tests are conducted. First, pre-test, which is a computer simulation, is carried out by a software called ANSYS AUTODYN to eliminate the effect of a canister that usually causes irregular dispersion of the fuel. Second, field test is performed to find out the amount and density effect of bursting charge. High speed cameras are installed in front of the canister to visualize the mechanism. Velocity, area and radius of the dispersed cloud are measured by image processing software, these are shown that the amount of bursting charge affects cloud velocity and area but density is not a significant factor of cloud formation.