• Title/Summary/Keyword: characterization of a finite group

Search Result 18, Processing Time 0.026 seconds

A NEW CHARACTERIZATION OF $A_p$ WHERE p AND p-2 ARE PRIMES

  • Iranmanesh, A.;Alavi, S.H.
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.3
    • /
    • pp.889-897
    • /
    • 2001
  • Based on the prime graph of a finite simple group, its order is the product of its order components (see[4]). It is known that Suzuki-Ree groups [6], $PSL_2(q)$ [8] and $E_8(q)$ [7] are uniquely deternubed by their order components. In this paper we prove that the simple groups $A_p$ are also unipuely determined by their order components, where p and p-2 are primes.

A NEW CHARACTERIZATION OF ALTERNATING AND SYMMETRIC GROUPS

  • ALAVI S. H.;DANESHKHAW A.
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.245-258
    • /
    • 2005
  • In this paper we prove that the alternating groups A_n, for n = p, p+1, p+2 and symmetric groups $S_n$, for n = p, p+1, where p$\ge$3 is a prime number, can be uniquely determined by their order components. As one of the important consequence of this characterization we show that the simple groups An, where n = p, p+1, P+2 and p$\ge$3 is prime, satisfy in Thompson's conjecture and Shi's conjecture.

ON FINITE GROUPS WITH A CERTAIN NUMBER OF CENTRALIZERS

  • REZA ASHRAFI ALI;TAERI BIJAN
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.217-227
    • /
    • 2005
  • Let G be a finite group and $\#$Cent(G) denote the number of centralizers of its elements. G is called n-centralizer if $\#$Cent(G) = n, and primitive n-centralizer if $\#$Cent(G) = $\#$Cent($\frac{G}{Z(G)}$) = n. In this paper we investigate the structure of finite groups with at most 21 element centralizers. We prove that such a group is solvable and if G is a finite group such that G/Z(G)$\simeq$$A_5$, then $\#$Cent(G) = 22 or 32. Moreover, we prove that As is the only finite simple group with 22 centralizers. Therefore we obtain a characterization of As in terms of the number of centralizers

A CHARACTERIZATION OF THE GROUP A22 BY NON-COMMUTING GRAPH

  • Darafsheh, Mohammad Reza;Yosefzadeh, Pedram
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.117-123
    • /
    • 2013
  • Let G be a finite non-abelian group. We define the non-commuting graph ${\nabla}(G)$ of G as follows: the vertex set of ${\nabla}(G)$ is G-Z(G) and two vertices x and y are adjacent if and only if $xy{\neq}yx$. In this paper we prove that if G is a finite group with $${\nabla}(G){\simeq_-}{\nabla}(\mathbb{A}_{22})$$, then $$G{\simeq_-}\mathbb{A}_{22}$$where $\mathbb{A}_{22}$ is the alternating group of degree 22.

STRUCTURES OF GEOMETRIC QUOTIENT ORBIFOLDS OF THREE-DIMENSIONAL G-MANIFOLDS OF GENUS TWO

  • Kim, Jung-Soo
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.4
    • /
    • pp.859-893
    • /
    • 2009
  • In this article, we will characterize structures of geometric quotient orbifolds of G-manifold of genus two where G is a finite group of orientation preserving diffeomorphisms using the idea of handlebody orbifolds. By using the characterization, we will deduce the candidates of possible non-hyperbolic geometric quotient orbifolds case by case using W. Dunbar's work. In addition, if the G-manifold is compact, closed and the quotient orbifold's geometry is hyperbolic then we can show that the fundamental group of the quotient orbifold cannot be in the class D.

A CHARACTERIZATION OF SOME PGL(2, q) BY MAXIMUM ELEMENT ORDERS

  • LI, JINBAO;SHI, WUJIE;YU, DAPENG
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.6
    • /
    • pp.2025-2034
    • /
    • 2015
  • In this paper, we characterize some PGL(2, q) by their orders and maximum element orders. We also prove that PSL(2, p) with $p{\geqslant}3$ a prime can be determined by their orders and maximum element orders. Moreover, we show that, in general, if $q=p^n$ with p a prime and n > 1, PGL(2, q) can not be uniquely determined by their orders and maximum element orders. Several known results are generalized.

A characterization of crossed products without cohomology

  • Hong, Jeong-Hee
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.183-193
    • /
    • 1995
  • Let N be a $II_1$ factor and G be a finite group acting outerly on N. Then the crossed product algebra $M = N \rtimes G$ is also a $II_1$ factor and $N' \cap M = CI$, i.e. N is irreducible in M. Moreover, N is regular in M, in other words, M is generated by the normalizer $N_M (N)$.

  • PDF

A finite element-experimental study of the impact of spheres on aluminium thin plates

  • Micheli, Giancarlo B.;Driemeier, Larissa;Alves, Marcilio
    • Structural Engineering and Mechanics
    • /
    • v.55 no.2
    • /
    • pp.263-280
    • /
    • 2015
  • This paper describes a study of the collision of hard steel spheres against aluminium thin circular plates at speeds up to 140 m/s. The tests were monitored by a high speed camera and a chronoscope, which allowed the determination of the ballistic limit and the plate deformation pattern. Quasi-static material parameters were obtained from tests on a universal testing machine and dynamic mechanical characterization of two aluminium alloys were conducted in a split Hopkinson pressure bar. Using a damage model, the perforation of the plates was simulated by finite element analysis. Axisymmetric, shell and solid elements were employed with various parameters of the numerical analysis being thoroughly discussed, in special, the dynamic model parameters. A good agreement between experiments and the numerical analysis was obtained.

A CHARACTERIZATION OF CLASS GROUPS VIA SETS OF LENGTHS

  • Geroldinger, Alfred;Schmid, Wolfgang Alexander
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.869-915
    • /
    • 2019
  • Let H be a Krull monoid with class group G such that every class contains a prime divisor. Then every nonunit $a{\in}H$ can be written as a finite product of irreducible elements. If $a=u_1{\cdot}\;{\ldots}\;{\cdot}u_k$ with irreducibles $u_1,{\ldots},u_k{\in}H$, then k is called the length of the factorization and the set L(a) of all possible k is the set of lengths of a. It is well-known that the system ${\mathcal{L}}(H)=\{{\mathcal{L}}(a){\mid}a{\in}H\}$ depends only on the class group G. We study the inverse question asking whether the system ${\mathcal{L}}(H)$ is characteristic for the class group. Let H' be a further Krull monoid with class group G' such that every class contains a prime divisor and suppose that ${\mathcal{L}}(H)={\mathcal{L}}(H^{\prime})$. We show that, if one of the groups G and G' is finite and has rank at most two, then G and G' are isomorphic (apart from two well-known exceptions).

A CHARACTERIZATION OF GROUPS PSL(3, q) BY THEIR ELEMENT ORDERS FOR CERTAIN q

  • Darafsheh, M.R.;Karamzadeh, N.S.
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.2
    • /
    • pp.579-591
    • /
    • 2002
  • Let G be a finite group and $\omega$(G) the set of elements orders of G. Denote by h($\omega$(G)) the number of isomorphism classes of finite groups H satisfying $\omega$(G)=$\omega$(H). In this paper, we show that for G=PSL(3, q), h($\omega$(G))=1 where q=11, 12, 19, 23, 25 and 27 and h($\omega$(G)=2 where q = 17 and 29.