• Title/Summary/Keyword: characteristics temperature

Search Result 19,749, Processing Time 0.042 seconds

Analysis of a Hydrodynamic Bearing of a HDD Spindle Motor Due to Elevated Temperature (온도변화에 의한 HDD 유체 동압 베어링의 특성 해석)

  • 김학운;김관수;장건희;이행수;김철순
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.556-563
    • /
    • 2003
  • This paper presents a method to investigate the characteristics of a hydrodynamic bearing of a HDD spindle motor due to elevated temperature considering the variation of the clearance as well as the lubricant viscosity. Iterative finite element analysis of the heat conduction and the thermal deformation is performed to determine the viscosity and clearance of a hydrodynamic bearing due to elevated temperature until the temperature of the bearing area converges. Proposed method is verified by comparing the calculated temperature with the measured one in elevated surrounding temperature as well as in room temperature. This research shows that elevated temperature changes the clearance as well as the lubricant viscosity of the hydrodynamic bearing of a HDD spindle motor. Once the viscosity and clearance of a hydrodynamic bearing of a HDD spindle motor are determined, finite element analysis of the Reynolds equation is performed to investigate the static and dynamic characteristics of a hydrodynamic bearing of a HDD spindle motor due to elevated temperature. It also shows that the variation of clearance due to elevated temperature is another important design consideration to affect the static and dynamic characteristics of a hydrodynamic bearing of a HDD spindle motor.

  • PDF

A Study of Stress ratio on the Fatigue Crack Growth Characteristics of Pressure Vessel SA516 Street at Low Temperature (저온 압력용기용 SA516강의 응력비에 따른 피로크랙 전파특성에 관한 연구)

  • 박경동;하경준
    • Proceedings of the KWS Conference
    • /
    • 2001.05a
    • /
    • pp.220-223
    • /
    • 2001
  • In this study, CT specimens were prepared hem ASTM SA516 which was used for pressure vessel plates for room and low temperature service. And we got the following characteristics from fatigue crack growth test carried out in the environment of room and low temperature at $25^{\circ}C$, -3$0^{\circ}C$, -6$0^{\circ}C$, -8$0^{\circ}C$, -l$0^{\circ}C$ and -l2$0^{\circ}C$ and in the range of stress ratio of 0.1, 0.3 by means of opening mode displacement. At the constant stress ratio, the threshold stress intensity factor range ΔK$_{th}$ in the early stage of fatigue crack growth ( Region I ) and stress intensity factor range ΔK in the stable of fatigue crack growth ( Region II) was increased in proportion to descend temperature. It assumed that the fatigue resistance characteristics and fracture strength at low temperature is considerable higher than that of room temperature in the early stage and stable of fatigue crack growth region. The straight line slope relation of logarithm da/dN - ΔK in Region II, that is, the fatigue crack growth exponent m increased with descending temperature at the constant stress ratio. It assumed that the fatigue crack growth rate da/dN is rapid in proportion to descend temperature in Region H and the cryogenic-brittleness greatly affect a material with decreasing temperature.e.greatly affect a material with decreasing temperature.

  • PDF

Effect of Temperature on Low Velocity Impact Characteristics of Composite Laminates (복합적층재의 온도에 의한 저속충격특성)

  • 한영욱;김후식;김재훈;이영신;조정미;박병준
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.93-96
    • /
    • 2002
  • Instrumented impact tests and compression-after-impact(CAI) tests have been used to evaluate the effect of temperature on the low-velocity impact characteristics of phenolic matrix composites reinforced with various woven glass fabric. Impact characteristics and damage area in laminates are evaluated by C-scan. It is shown that the extent of damage and residual compressive strength of the laminates vary with energy level and impact test temperature. The damage area increases with increasing impact energy and temperature. All these observations indicate reduced impact damage resistance and damage tolerance of the laminates at elevated temperature.

  • PDF

Temperature Characteristics for Traction Motor of Korean High Speed Train (한국형 고속전철 전동기 온도 특성)

  • Han, Young-Jae;Kim, Ki-Hwan;Lee, Tae-Hyoung;Koo, Hun-Mo;Kim, Jeong-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.265-267
    • /
    • 2006
  • There are various elements that have influence on safety and reliability of high-speed railway vehicles. Among them, mechanical characteristics of traction motors are very important. Therefore, we verified that temperature characteristics have influence on damage and durability of these parts. We designed a measurement system for temperature test, and could measure the temperature of each device by the system. As the result of temperature test, we could confirm that the traction motors on Korean High-Speed Train satisfy the criteria. From this test, we get information of the traction motor about the temperature characteristic during running speed and running time.

  • PDF

Strength Characteristics of An Aluminum 2024-T3 in Short-time High Temperature Environment (AL 2024-T3의 단시간 고온 강도 특성)

  • 이열화;김재영;김헌주;박경민;김종환
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.255-263
    • /
    • 2001
  • The main purpose of this paper is to investigate strength characteristics of Aluminum 2024-T3 in high temperature environment. Tensile test of Aluminum 2024-T3 has been carried out in high temperature environment. The stress-strain relations are investigated with temperature and Young's modulus, yield strength and ultimate strength are deduced from the test results. The modulus and strength of the test are compared with those of MIL HANDBOOK and tips on structural design in high temperature environment are suggested.

  • PDF

Temperature Preconditioning for Improving Convergence Characteristics in Calculating Low Mach Number Flows, I: Euler Equations (저속 유동 계산의 수렴성 개선을 위한 온도예조건화 I: 오일러 방정식)

  • Lee, Sang-Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.12
    • /
    • pp.1067-1074
    • /
    • 2007
  • A temperature preconditioning that modulates the derivative of density with respect to temperature is proposed to improve the convergence characteristics of the preconditioned Euler equations. Flows in a two-dimensional channel with a 10% circular bump in the middle of the channel were calculated at different speeds. The numerical dissipation terms of the Roe’s FDS scheme according to the temperature preconditioning are derived. It is shown that the temperature preconditioning accelerates convergence of the preconditioned Euler equations.

The Effect of Intake Air Temperature on Knock Characteristics in a Spark-Ignition Engine (흡입 공기 온도변화에 따른 스파크 점화기관의 노킹 특성 변화)

  • 정일영;전광민
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.1
    • /
    • pp.22-31
    • /
    • 1993
  • Spark-ignition engine knock is affected by engine operating conditions such as engine speed, spark timing and intake air temperature. In this study the effect of intake air temperature on knock characteristics was studied experimentally using a 4-cylinder carburetor spark-ignition engine. The cylinder pressure data at 2000rpm were taken for intake air temperature range of $30^{\circ}C$ to $80^{\circ}C$ with $10^{\circ}C$ interval. And 80 consecutive cycles were taken at each experimental condition. As the same spark timing, as the intake air temperature increased by $50^{\circ}C$, the mean knock intensity increased about 20kPa. This effect corresponds to that of spark timing advance of 3 crank angle degrees.

  • PDF

Analysis of IPMSM Temperature Characteristics based on Stator Design Parameters (600W급 IPMSM의 고정자 설계 변수 변화에 따른 온도 특성 분석 및 고찰)

  • Go, Duk-Hwa;Kim, Yong-Tae;Kim, Gyu-Tak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.8
    • /
    • pp.1201-1206
    • /
    • 2017
  • In this paper, the temperature characteristics by change the width of teeth and yoke in the stat or parameters were analyzed. An initial model of fill factor 45 [%] was produced. Through the experiment, the validity of the temperature analysis using the thermal equivalent circuit method was verified. So, initial model was selected as basic model. Also, temperature characteristic analysis was performed for each width change of the stator teeth and yoke, and the effects of the width of stator teeth and yoke on the temperature characteristics were analyzed.

Representative Temperature Assessment for Improvement of Short-Term Load Forecasting Accuracy (단기 전력수요예측 정확도 개선을 위한 대표기온 산정방안)

  • Lim, Jong-Hun;Kim, Si-Yeon;Park, Jeong-Do;Song, Kyung-Bin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.6
    • /
    • pp.39-43
    • /
    • 2013
  • The current representative temperature selection method with five cities cannot reflect the sufficient regional climate characteristics. In this paper, the new representative temperature selection method is proposed with the consideration of eight representative cities. The proposed method considered the recent trend of power sales, the climate characteristics and population distribution to improve the accuracy of short-term load forecasting. Case study results for the accuracy of short-term load forecasting are compared for the traditional temperature weights of five cities and the proposed temperature weights of eight cities. The simulation results show that the proposed method provides more accurate results than the traditional method.

Temperature Dependent Characteristics Analysis of FLL Circuit

  • Choi, Jin-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.1
    • /
    • pp.62-65
    • /
    • 2009
  • In this paper, the temperature characteristics of full CMOS FLL(frequency locked loop) re analyzed. The FLL circuit is used to generate an output signal that tracks an input efference signal. The locking time of FLL is short compared to PLL(phase locked loop) circuit because the output signal of FLL is synchronized only in frequency. Also the FLL s designed to allow the circuit to be fully integrated. The FLL circuit is composed two VCs, two buffers, a VCO and two frequency dividers. The temperature variation of frequency divider, FVC and buffer cancelled because the circuit structure. is the same and he temperature effect is cancelled by the comparator. Simulation results are shown to illustrate the performance of the designed FLL circuit with temperature.