• Title/Summary/Keyword: characteristics of currents

Search Result 1,000, Processing Time 0.026 seconds

A Study of the SPWM High-Frequency Harmonic Circulating Currents in Modular Inverters

  • Xu, Sheng;Ji, Zhendong
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2119-2128
    • /
    • 2016
  • Due to detection and control errors, some high-frequency harmonics with voltage-source characteristics cause circulating currents in modular inverters. Moreover, the circulating currents are usually affected by the output filters (OF) of each module due to their filter and resonance properties. The interaction among the circulating currents in the modules increase the power loss and reduce system stability and control precision. Therefore, this paper reports the results of a study on the SPWM high-frequency harmonics circulating currents for a double-module VSI. In the paper, an analysis of the circulating-current circuits is briefly described. Next, a mathematic model of the single-module output voltage based on the carrier frequency of SPWM is built. On this basis, through mathematic modeling of high-frequency harmonic circulating currents, the formation mechanism and distribution characteristics of circular currents and their influences are studied in detail. Finally, the influences of the OF on the circulating currents are studied by mainly taking an LC-type filter as an example. A theoretical analysis and experimental results demonstrate some important characteristics. First, the carrier phase shifting of the SPWM for each module is the major cause of the SPWM harmonic circulating currents, and the circulating currents are in an odd distribution around n-times the carrier frequency $n{\omega}_s$, where n = 1, 2, 3, ${\ldots}$. Second, the harmonic circular currents do not flow into the parallel system. Third, the OF can effectively suppress the non-circulating part of the high-frequency harmonic currents but is ineffective for the circulation part, and actually reduces system stability.

The Characteristics of Coastal Currents to the Northwest of the Taean Peninsula in the Yellow Sea (서해 태안반도 북서 연안해역에서의 연안류 특성)

  • Shin, Hong-Ryeol
    • Ocean and Polar Research
    • /
    • v.27 no.4
    • /
    • pp.433-441
    • /
    • 2005
  • To investigate the characteristics of tidal currents and water circulation in the coastal waters off the Taean Peninsula, tidal currents and sea levels were measured at the study area from 1998 to 2004. In the central waterway to the south of Changan Sand Ridge, mean speed of tidal currents and residual currents were 74.0cm/s, 17.8cm/s respectively; the dominant residual currents flowed northeastward, and the amplitudes of semi-diurnal components $(M_2,\;S_2)$ were larger than diurnal components $(O_1,\;K_1)$. The flood and ebb tidal currents were northeastward and southwestward, respectively, and each period was about 6 hours for them, which was consistent with the period of sea levels at the study area. In the coastal region near Hakampo, Taean, mean velocities of tidal currents and residual currents were 46.1cm/s, 30.8cm/s respectively, and the dominant residual currents flowed southwestward. The amplitudes of shallow water constituents $(M_4,\;MS_4)$ were relatively laige, which were weaker to the northeastern coastal region off Mineodo. The northeastward flow continued for about $2{\sim}3$ hours, while the southwestward flow continued for about $9{\sim}10$ hours near Hakampo during the tidal period. Tidal currents flowed northeastward in the central area of the waterway during the period from the Low Water Level (LWL) to the High Water Level (HWL). While the currents in the coastal region flowed northeastward for the first 3 hours after the LWL, southwestward counter-currents flowed between 3 and 6 hours after the LWL. During the period from the HWL to the LWL, the dominant currents flowed southwestward in the study area except to the northeastern coastal region off Mineodo. Along the shorelines, the counter-currents flowed northward between 4 and 6 hours after the HWL. It seems that the counter-currents near the coastal region are caused by the topography and the geography of the shorelines at the study area.

Characteristics of leakage currents flowing through ZnO varistor exposed to surge currents (서지전류가 입사된 ZnO 바리스터에 흐르는 누설전류의 특성)

  • Lee, Bok-Hee;Li, Feng;Lee, Su-Bong
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.338-341
    • /
    • 2006
  • This paper presents the leakage current characteristics of ZnO varistors exposed to the $8/20{\mu}s$ lightning impulse currents as functions of the number of injection and amplitude of impulse currents. The surge simulator system ECAT that can generate $8/20{\mu}s$ impulse currents with a peak short-circuit of $5[kA_p]$ was used. Leakage currents flowing through ZnO varistors subjected to the $8/20{\mu}s$ impulse currents were measured under 60 Hz AC voltages. The trend curves of resistive leakage current of ZnO varistors were analytically calculated.

  • PDF

The Elementary School Teachers' Understandings about the Characteristics of Currents according to the Connection Methods of Batteries in Simple Electric Circuits (전지의 연결방법에 따른 전류의 특성에 대한 초등교사들의 이해도)

  • Hyun, Dong-Geul;Shin, Ae-Kyung
    • Journal of Korean Elementary Science Education
    • /
    • v.33 no.2
    • /
    • pp.335-351
    • /
    • 2014
  • The 96 elementary school teachers' the degrees of understandings about the characteristics of the currents according to the connection methods of batteries in simple electric circuits were investigated. In this study, the concepts on the characteristics of currents according to the connection methods of batteries were divided 'the learned concepts' and 'the differentiated concepts'. The characteristics of the currents in the region of the larger resistance of load than the internal resistance of a battery were called the learned concepts, they are taught in the science curriculum. While the characteristics of the currents in the region of the smaller resistance of load than the internal resistance of a battery were called the differentiated concepts, they are not exposed clearly in the science curriculum. The results obtained in this study are as follows: The average score related to the learned concepts was relatively high, while the degree of the teachers' cognitions of the internal resistance of a battery and the resistance of wires were low. Also the average score related to the differentiated concepts was very low because it seems so new to the elementary school teachers. It strongly suggests that the elementary school teachers did not understand meaningfully the characteristics of the currents related to the connections of batteries on the ground of the cognitions of the internal resistances of batteries and the resistances of loads in simple electric circuits. Hence, they might experience difficulties due to the problems occurred in relation to the connections of batteries in the elementary school science lessons.

The Effects of Eddy Currents and Hysteresis on the Performance of Inductive Position Sensor for Magnetic Bearings (자기베어링용 유도형 위치 센서의 성능에 미치는 와전류와 히스테레시스의 영향)

  • Noh, Myoung-Gyu;Jeong, Min-Kyoung
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.36-41
    • /
    • 2001
  • The performance of an inductive position sensor is described by the accuracy and the dynamic characteristics of the sensor. Both of these performance indices are affected by magnetic hysteresis and eddy currents. In this paper, a model of an inductive sensor is presented. This model includes the effects of hysteresis and eddy currents. Computer simulation shows that the sensitivity of the sensor is greatly affected by hysteresis and eddy currents. Repeability error increases with hysteresis and eddy currents effects. Results also show that eddy currents influence more on the sensor performance than hysteresis does. To reduce the effects of hysteresis and eddy currents, the sensor should be made out of thin laminations with high resistivity.

  • PDF

Characteristics of Transient Grounding Impedance under Surge Currents (서지전류에 대한 과도접지임피던스의 특성)

  • Lee, Deok-Hui;Park, Jong-Sun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.11
    • /
    • pp.717-723
    • /
    • 1999
  • The transient characteristics of grounding systems play a major role in the protection of power equipments, electronic circuits and info-communication facilities against surges which arise from lightning or ground faults. Electronic devices are very weak against lightning surges injected from grounding systems and can be damaged. The malfunction and damage of electronic circuits bring about bad operation performances, a lot of economical losses, and etc. Therefore, in order to obtain the effective protection measure of electronic devices from overvoltages and lightning surges, the analysis of the transient grounding impedances in essential. One of this work is to examine the transient behaviors of grounding impedances under steplike currents for various grounding systems. And the other of this work is to evaluate the transient behaviors of a grid with rods under impulse currents and to investigate the effect of grounding lead wire. Transient grounding impedances of a grid with rods under impulse current waves have been measured as a parameter of the length of the grounding leads. Z-t, Z-i and V-i curves of transient grounding impedance under impulse current waveforms have been measured and analyzed. It was found that the grounding impedance gives the inductive, resistive and capacitive aspects under steplike current. Transient grounding impedance characteristics were very different with shapes, geometries of ground electrodes. Also, they were dependent on the waveform and magnitude of impulse current.

  • PDF

I-V Characteristics of Epitaxial $CoSi_2$-contacted p+/n Junctions (Epitaxial $CoSi_2$접촉 p+/n 접합의 I-V 특성)

  • 구본철;김시중;김주연;배규식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.11
    • /
    • pp.908-913
    • /
    • 2000
  • CoSi$_2$/p+/n diodes(bilayer diodes) were fabricated by using epitaxial CoSi$_2$grown from Co/Ti bilayer as a diffusion source. The I-V characteristics of p+/n diodes were measured and compared with those of diode made from Co monolayer (monolayer diode). Monolayer diodes showed typical p+n junction characteristics with the leakage current of as low as 10$^{-12}$ A and forward current 6-orders higher than the leakage current, when drive-in annealed at 90$0^{\circ}C$ for 20 sec.. On the other hand, bilayer diodes showed the Schottky-like behaviors with forward currents rather higher than those of monolyer diodes, but with too high leakage currents, when drive-in annealed at $700^{\circ}C$ or higher. However, when the annealing temperature was lowered to $700^{\circ}C$ and annealing time was increased to 60 sec., the leakage current was reduced to 10$^{-11}$ A and thus sho3wed typical diode characteristics. The high leakage currents for diodes annealed at $700^{\circ}C$ or higher was attributed to Shannon contacts formed due to unremoved Co-Ti-Si precipitates. But when annealed at 50$0^{\circ}C$, B ions diffused in the direction of the surface layer, and thus the leakage currents were reduced by removing Shannon contacts.

  • PDF

Characteristics of Trap in the Thin Silicon Oxides with Nano Structure

  • Kang, C.S.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.6
    • /
    • pp.32-37
    • /
    • 2003
  • In this paper, the trap characteristics of thin silicon oxides is investigated in the ULSI implementation with nano structure transistors. The stress and transient currents associated with the on and off time of applied voltage were used to measure the distribution of high voltage stress induced traps in thin silicon oxide films. The stress and transient currents were due to the charging and discharging of traps generated by high stress voltage in the silicon oxides. The transient current was caused by the tunnel charging and discharging of the stress generated traps nearby two interfaces. The stress induced leakage current will affect data retention in electrically erasable programmable read only memories. The oxide current for the thickness dependence of stress current, transient current, and stress induced leakage currents has been measured in oxides with thicknesses between 113.4nm and 814nm, which have the gate area 10$\^$-3/ $\textrm{cm}^2$. The stress induced leakage currents will affect data retention, and the stress current and transient current is used to estimate to fundamental limitations on oxide thicknesses.

$100 A/mm^2$ Class Bi-2223 Tapes in Electromechanical Devices (전력기기에서 $100 A/mm^2$급 Bi-2223테이프)

  • 류경우;최경주;성기철;류강식
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.1
    • /
    • pp.55-60
    • /
    • 2002
  • $100 A/mm^2$ class Bi-2223 tapes have recently become commercially available. Some important characteristics of the tapes, e .g. critical current, ac loss, characteristics at joint, fault current characteristics, are required for an application such as a power cable or a power transformer. In this paper they have been investigated experimentally. The results indicate that the self-field loss of the high current density tapes is not negligible, compared to resistive loss in a copper wire for the same currents. In a cable, the self-field loss for relatively large currents is much larger than the magnetization loss due to an external field. But in a transformer, the magnetization loss is dominant, compared to the self-field loss. Finally the fault current characteristics show that the high current density tapes are never safe from burn-out even for fault currents with a few cycles.

Current Characteristics in the Silicon Oxides (실리콘 산화막의 전류 특성)

  • Kang, C.S.;Lee, Jae Hak
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.10
    • /
    • pp.595-600
    • /
    • 2016
  • In this paper, the oxide currents of thin silicon oxides is investigated. The oxide currents associated with the on time of applied voltage were used to measure the distribution of voltage stress induced traps in thin silicon oxide films. The stress induced leakage currents were due to the charging and discharging of traps generated by stress voltage in the silicon oxides. The stress induced leakage current will affect data retention in memory devices. The oxide current for the thickness dependence of stress current and stress induced leakage currents has been measured in oxides with thicknesses between $109{\AA}$, $190{\AA}$, $387{\AA}$, and $818{\AA}$ which have the gate area $10^{-3}cm^2$. The oxide currents will affect data retention and the stress current, stress induced leakage current is used to estimate to fundamental limitations on oxide thicknesses.