• Title/Summary/Keyword: characteristic decomposition

Search Result 198, Processing Time 0.025 seconds

Morphological Hand-Gesture Recognition Algorithm (형태론적 손짓 인식 알고리즘)

  • Choi Jong-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.8
    • /
    • pp.1725-1731
    • /
    • 2004
  • The use of gestures provides an attractive alternate to cumbersome interface devices for human-computer interaction. This has motivated a very active research area concerned with computer vision-based analysis and interpretation of hand gestures. The most important issues in gesture recognition are the simplification of algorithm and the reduction of processing time. The mathematical morphology based on geometrical set theory is best used to perform the processing. A key idea of proposed algorithm in this paper is to apply morphological shape decomposition. The primitive elements extracted to a hand gesture include in very important information on the directivity of the hand gestures. Based on this characteristic, we proposed the morphological gesture recognition algorithm using feature vectors calculated to lines connecting the center points of a main-primitive element and sub-primitive elements. Through the experiment, we demonstrated the efficiency of proposed algorithm. Coupling natural interactions such as hand gesture with an appropriately designed interface is a valuable and powerful component in the building of TV switch navigating and video contents browsing system.

EEG Characteristic Analysis of Sleep Spindle and K-Complex in Obstructive Sleep Apnea

  • Kim, Min Soo;Jeong, Jong Hyeog;Cho, Yong Won;Cho, Young Chang
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.1
    • /
    • pp.41-51
    • /
    • 2017
  • This Paper Describes a Method for the Evaluation of Sleep Apnea, Namely, the Peak Signal-to-noise ratio (PSNR) of Wavelet Transformed Electroencephalography (EEG) Data. The Purpose of this Study was to Investigate EEG Properties with Regard to Differences between Sleep Spindles and K-complexes and to Characterize Obstructive Sleep Apnea According to Sleep Stage. We Examined Non-REM and REM Sleep in 20 Patients with OSA and Established a New Approach for Detecting Sleep Apnea Base on EEG Frequency Changes According to Sleep Stage During Sleep Apnea Events. For Frequency Bands Corresponding to A3 Decomposition with a Sampling Applied to the KC and the Sleep Spindle Signal. In this Paper, the KC and Sleep Spindle are Ccalculated using MSE and PSNR for 4 Types of Mother Wavelets. Wavelet Transform Coefficients Were Obtained Around Sleep Spindles in Order to Identify the Frequency Information that Changed During Obstructive Sleep Apnea. We also Investigated Whether Quantification Analysis of EEG During Sleep Apnea is Valuable for Analyzing Sleep Spindles and The K-complexes in Patients. First, Decomposition of the EEG Signal from Feature Data was Carried out using 4 Different Types of Wavelets, Namely, Daubechies 3, Symlet 4, Biorthogonal 2.8, and Coiflet 3. We Compared the PSNR Accuracy for Each Wavelet Function and Found that Mother Wavelets Daubechies 3 and Biorthogonal 2.8 Surpassed the other Wavelet Functions in Performance. We have Attempted to Improve the Computing Efficiency as it Selects the most Suitable Wavelet Function that can be used for Sleep Spindle, K-complex Signal Processing Efficiently and Accurate Decision with Lesser Computational Time.

Characteristic of wastewater treatment using Boron-doped Diamond Electrode (붕소가 도핑된 다이아몬드전극을 이용한 폐수처리특성)

  • Lee, Eun-Ju;Einaga, Y.;Fujishima, A.;Park, Soo-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.795-798
    • /
    • 2003
  • Toxic organics are of great environmental concern primarily because they are toxic to mammals and birds, and are relatively soluble in water to contaminate surface water and groundwater. In this study, the decomposition of phenol, a widely used organic, in aqueous solutions by Boron doped diamond(BDD) electrode was examined. Thin, Boron-doped conducting diamond films are expected to be excellent electrodes for industrial electrolysis. Boron-doped diamond (BDD) were used as anode for generating ozone gas by electrolysis of acid solution. In this work. we have studied ozone generating system using BDD electrode. In order to determine the ozone generation properties of diamond electrode, experimental conditions, electrolyte concentration, temperature, flow rate and reaction time were varied diversely. As a result, we could confirm that ozone gas was generated successfully and the performance of diamond electrode was stable for electrolyte while $PbO_2$ electrode was disintegrated. Actually we are found that ozone amount increased by lowering the temperature of electrolyte. Decomposition of phenol concentration in the reaction solution by photolytic ozonation( $UV/O_3$) was analyzed by HPLC epuipped with a UV detector.

  • PDF

Decomposition of Sediment size Curves into Log-Normal components: An Example from Cheju Strait Continental shelf (퇴적물입도곡선의 정규성분으로의 분해:제주해협의 예)

  • 공영세;김원식
    • 한국해양학회지
    • /
    • v.28 no.2
    • /
    • pp.114-120
    • /
    • 1993
  • Numerical method of nonlinear regression was introduced to characterize grain-size distribution more effectively than using the traditional textural parameters. This technique proved critical particularly to multimodal size distributions, as exemplified by samples from Cheju strait continental shelf. Grain-size analysis of samples collected from the Cheju Strait continental shelf reveals that 86% of the grain-size distributions are multimodal. As multimodal grain-size distribution deviates from the statistical (log) normal distribution, the grain-size parameters traditionally used in sediment studies do not describe the distribution efficiently. Therefore, the use of grain-size curves into elementary normal component curves was used. Means and standard deviations of 387 decomposed normal components were decided by a decomposition method (nonlinear least square regression) from 167 size curves of the Cheju Strait sediments. The mean values of decomposed normal components show peaks at 1-3 phi and 8-9 phi size classes. The plot of mean values of the coarse fraction normal components on the map shows a characteristic and complex areal distribution. On the basis of the areal distribution of the mean values of the components and that of isopach of total Plenipotence sediment, the areal distribution of layers composing a transgressive sand of Late Plenipotence age were revealed.

  • PDF

Evaluation Using Dynamic Characteristic of Steel Structures under Periodical Impact Loads (주기적 충격하중을 받는 강 구조물의 구조건전성 평가)

  • Kim, Kang Seok;Nah, Hwan Seon;Lee, Hyeon Ju;Lee, Kang Min;Yoo, Kyung Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.120-128
    • /
    • 2011
  • Recently, safety diagnosis of the existing structures has been emerged as important issue. In particular, systematical and precise safety diagnostics for steel structures for power substation, have been required. Steel structures for power substation are under the periodical impact loads from operations of gas insulated switchgear. These loading condition accelerates damage and aging of structure. The objective of this research is to evaluate damage of structure under periodical impact loads. To evaluate the integrity of structures as organizing mathematical models including the dynamic characteristics of structures, Frequency Domain Decomposition method was choiced and an algorism was proposed. For verifying this methods and algorism, a mathematical model is composed of the development of a variety of reverse analysis and a signal processing technology reflecting physical damage of structures. A series of analysis and test results indicatge that proposed method has a confidence for applying a filed test. Therefore, it is expected to be able to take advantage of system identification to detect damage for the maintenance and management of steel structures under periodical impact loads such as power substation.

Polycaprolactone Nanofiber Mats Fabricated Using an Electrospinning Process Supplemented with a Chemical Blowing Agent (전기방사공정과 발포제를 이용한 Polycaprolactone 나노섬유 지지체 제작)

  • Kim, Geun-Hyung;Yoon, Hyeon;Lee, Haeng-Nam;Park, Gil-Moon
    • Polymer(Korea)
    • /
    • v.32 no.5
    • /
    • pp.458-464
    • /
    • 2008
  • A successful scaffold should have a highly porous structure and good mechanical stability. High porosity and appropriate pore size provide structural matrix for initial cell attachment and proliferation enabling the exchange of nutrients between the scaffold and environment. In this paper the highly porous scaffold of poly(${\varepsilon}$-caprolactone) electrospun nanofibers could be manufactured with an auxiliary electrode and chemical blowing agent (BA) under several processing conditions, such as the concentration of PCL solution, weight percent of a chemical blowing agent, and decomposition time of a chemical blowing agent. To attain stable electrospinnability and blown nanofiber mats having high microporosity and large pore, a processing condition, 8wt% of PCL solution and 0.5wt% of a chemical blowing agent under $100^{\circ}C$ and decomposition time of $2{\sim}3\;s$, was used. The growth characteristic of human dermal fibroblasts cells cultured in the mats showed the good adhesion and proliferation on the blown mat compared to a normal electrospun mat.

Characteristics of Neo-Deconstructivism in Modern Men's Fashion Bags -Focusing on the 2019 S/S~2021 S/S Men's Collection- (현대 남성 패션 가방에 나타난 신해체주의 특성 -2019 S/S~2021 S/S 남성 컬렉션을 중심으로-)

  • Hong, Yunjung;Kim, Rira
    • Journal of Fashion Business
    • /
    • v.26 no.4
    • /
    • pp.32-51
    • /
    • 2022
  • This study analyzed the characteristics and expression techniques of men's fashion bags and their aesthetic and formative values in modern men's fashion from the perspective of neo-deconstructivism. The study subjects were men's fashion bags appearing in four collections in Paris, Milan, London, and New York in the 2019 S/S-2021 S/S season. As a research method, the characteristics and expression techniques of the new disintegration of men's fashion bags were analyzed and categorized through prior research and literature research. The results of the study are as follows: First, the neoclassical characteristics of men's fashion bags caused 'Re-creation' to appear as the dissolution of the design principle and structure of the bag, and it was derived as 'decomposition of form' and 'decomposition of dress method'. Second, the 'Inclusive Diversity' of modern men's fashion bags of neo-deconstructivism appears in the form of gender demarcation and dissonance coordination. Third, 'Playfulness' in men's fashion bags involves the pursuit of fun through unconventional changes in the shape, size, and design of the bag, and it sometimes provides a fresh, new play experience through unpredictable design elements. Fourth, the 'Pursuit of new values' in male's fashion bags was a characteristic wherein the boundary between DIY attire and daily clothes and high fashion by the individual selection of consumers was blurred. This work is meaningful in that it conducted a basic study of men's fashion bags by examining the modern men's fashion bag from the perspective of the philosophical trend of neo-deconstructivism and categorizing its characteristics.

Seismic safety assessment of eynel highway steel bridge using ambient vibration measurements

  • Altunisik, Ahmet Can;Bayraktar, Alemdar;Ozdemir, Hasan
    • Smart Structures and Systems
    • /
    • v.10 no.2
    • /
    • pp.131-154
    • /
    • 2012
  • In this paper, it is aimed to determine the seismic behaviour of highway bridges by nondestructive testing using ambient vibration measurements. Eynel Highway Bridge which has arch type structural system with a total length of 216 m and located in the Ayvaclk county of Samsun, Turkey is selected as an application. The bridge connects the villages which are separated with Suat U$\breve{g}$urlu Dam Lake. A three dimensional finite element model is first established for a highway bridge using project drawings and an analytical modal analysis is then performed to generate natural frequencies and mode shapes in the three orthogonal directions. The ambient vibration measurements are carried out on the bridge deck under natural excitation such as traffic, human walking and wind loads using Operational Modal Analysis. Sensitive seismic accelerometers are used to collect signals obtained from the experimental tests. To obtain experimental dynamic characteristics, two output-only system identification techniques are employed namely, Enhanced Frequency Domain Decomposition technique in the frequency domain and Stochastic Subspace Identification technique in time domain. Analytical and experimental dynamic characteristic are compared with each other and finite element model of the bridge is updated by changing of boundary conditions to reduce the differences between the results. It is demonstrated that the ambient vibration measurements are enough to identify the most significant modes of highway bridges. After finite element model updating, maximum differences between the natural frequencies are reduced averagely from 23% to 3%. The updated finite element model reflects the dynamic characteristics of the bridge better, and it can be used to predict the dynamic response under complex external forces. It is also helpful for further damage identification and health condition monitoring. Analytical model of the bridge before and after model updating is analyzed using 1992 Erzincan earthquake record to determine the seismic behaviour. It can be seen from the analysis results that displacements increase by the height of bridge columns and along to middle point of the deck and main arches. Bending moments have an increasing trend along to first and last 50 m and have a decreasing trend long to the middle of the main arches.

Evaluation of Multivariate Stream Data Reduction Techniques (다변량 스트림 데이터 축소 기법 평가)

  • Jung, Hung-Jo;Seo, Sung-Bo;Cheol, Kyung-Joo;Park, Jeong-Seok;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.13D no.7 s.110
    • /
    • pp.889-900
    • /
    • 2006
  • Even though sensor networks are different in user requests and data characteristics depending on each application area, the existing researches on stream data transmission problem focus on the performance improvement of their methods rather than considering the original characteristic of stream data. In this paper, we introduce a hierarchical or distributed sensor network architecture and data model, and then evaluate the multivariate data reduction methods suitable for user requirements and data features so as to apply reduction methods alternatively. To assess the relative performance of the proposed multivariate data reduction methods, we used the conventional techniques, such as Wavelet, HCL(Hierarchical Clustering), Sampling and SVD (Singular Value Decomposition) as well as the experimental data sets, such as multivariate time series, synthetic data and robot execution failure data. The experimental results shows that SVD and Sampling method are superior to Wavelet and HCL ia respect to the relative error ratio and execution time. Especially, since relative error ratio of each data reduction method is different according to data characteristic, it shows a good performance using the selective data reduction method for the experimental data set. The findings reported in this paper can serve as a useful guideline for sensor network application design and construction including multivariate stream data.

Decomposition Characteristic of Sedimentary Organic Matters by Bacteria (세균에 의한 퇴적유기물의 분해 특성에 관한 연구)

  • Shin, Woo-Seok;Kang, Jin-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.2
    • /
    • pp.132-136
    • /
    • 2011
  • The Temporal variability in the food chain structure of bacteria in the sedimentary organic matter was investigated using stable isotope and fatty acid. Potential organic matter sources (Land plant, Marine POM, benthic microalgae, Riverine POM), sedimentary organic matter and bacteria were sampled in Gamo largoon and Nanakita estuary. The main objective of the present study was to determine food sources of bacteria along with temporal variability. Land plant (${\delta}^{13}C$ = -26.6‰ and ${\delta}^{15}N$ = 3.6‰) and Riverine POM (${\delta}^{13}C$ = -25.5‰ and ${\delta}^{15}N$ = 8.9‰) were isotopically distinct from benthic microalgae (${\delta}^{13}C$ = -16.3‰ and ${\delta}^{15}N$ = 6.2‰) and Marine POM (${\delta}^{13}C$ = -20.3‰ and ${\delta}^{15}N$ = 10.3‰). ${\delta}^{13}C$ values of sedimentary organic matter showed a distinct gradient in the range of -20.7‰ to -191‰. The stable carbon and nitrogen isotope values of bacteria in the study were -20.8‰ to -18.6‰ for ${\delta}^{13}C$ and 6.5‰ to 8.6‰ for ${\delta}^{15}N$. From this results based on stable isotope measurements showed that in the bacteria was found to be dominated by Marine POM and Benthicmicoralge during 0 to 20 day. Whereas, terrestrial plant and riverine POM showed little in fluence to bacteria during the experiment.