• Title/Summary/Keyword: character classifier

Search Result 49, Processing Time 0.068 seconds

Meter Numeric Character Recognition Using Illumination Normalization and Hybrid Classifier (조명 정규화 및 하이브리드 분류기를 이용한 계량기 숫자 인식)

  • Oh, Hangul;Cho, Seongwon;Chung, Sun-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.1
    • /
    • pp.71-77
    • /
    • 2014
  • In this paper, we propose an improved numeric character recognition method which can recognize numeric characters well under low-illuminated and shade-illuminated environment. The LN(Local Normalization) preprocessing method is used in order to enhance low-illuminated and shade-illuminated image quality. The reading area is detected using line segment information extracted from the illumination-normalized meter images, and then the three-phase procedures are performed for segmentation of numeric characters in the reading area. Finally, an efficient hybrid classifier is used to classify the segmented numeric characters. The proposed numeric character classifier is a combination of multi-layered feedforward neural network and template matching module. Robust heuristic rules are applied to classify the numeric characters. Experiments using meter image database were conducted. Meter image database was made using various kinds of meters under low-illuminated and shade-illuminated environment. The experimental results indicates the superiority of the proposed numeric character recognition method.

Character-Based Video Summarization Using Speaker Identification (화자 인식을 통한 등장인물 기반의 비디오 요약)

  • Lee Soon-Tak;Kim Jong-Sung;Kang Chan-Mi;Baek Joong-Hwan
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.4
    • /
    • pp.163-168
    • /
    • 2005
  • In this paper, we propose a character-based summarization algorithm using speaker identification method from the dialog in video. First, we extract the dialog of shots containing characters' face and then, classify the scene according to actor/actress by performing speaker identification. The classifier is based on the GMM(Gaussian Mixture Model) using the 24 values of MFCC(Mel Frequency Cepstrum Coefficient). GMM is trained to recognize one actor/actress among four who are all trained by GMM. Our experiment result shows that GMM classifier obtains the error rate of 0.138 from our video data.

  • PDF

Recognize Handwritten Urdu Script Using Kohenen Som Algorithm

  • Khan, Yunus;Nagar, Chetan
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.1
    • /
    • pp.57-61
    • /
    • 2012
  • In this paper we use the Kohonen neural network based Self Organizing Map (SOM) algorithm for Urdu Character Recognition. Kohenen NN have more efficient in terms of performance as compare to other approaches. Classification is used to recognize hand written Urdu character. The number of possible unknown character is reducing by pre-classification with respect to subset of the total character set. So the proposed algorithm is attempt to group similar character. Members of pre-classified group are further analyzed using a statistical classifier for final recognition. A recognition rate of around 79.9% was achieved for the first choice and more than 98.5% for the top three choices. The result of this paper shows that the proposed Kohonen SOM algorithm yields promising output and feasible with other existing techniques.

An Efficient Binarization Method for Vehicle License Plate Character Recognition

  • Yang, Xue-Ya;Kim, Kyung-Lok;Hwang, Byung-Kon
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.12
    • /
    • pp.1649-1657
    • /
    • 2008
  • In this paper, to overcome the failure of binarization for the characters suffered from low contrast and non-uniform illumination in license plate character recognition system, we improved the binarization method by combining local thresholding with global thresholding and edge detection. Firstly, apply the local thresholding method to locate the characters in the license plate image and then get the threshold value for the character based on edge detector. This method solves the problem of local low contrast and non-uniform illumination. Finally, back-propagation Neural Network is selected as a powerful tool to perform the recognition process. The results of the experiments i1lustrate that the proposed binarization method works well and the selected classifier saves the processing time. Besides, the character recognition system performed better recognition accuracy 95.7%, and the recognition speed is controlled within 0.3 seconds.

  • PDF

Multiple-Classifier Combination based on Image Degradation Model for Low-Quality Image Recognition (저화질 영상 인식을 위한 화질 저하 모델 기반 다중 인식기 결합)

  • Ryu, Sang-Jin;Kim, In-Jung
    • The KIPS Transactions:PartB
    • /
    • v.17B no.3
    • /
    • pp.233-238
    • /
    • 2010
  • In this paper, we propose a multiple classifier combination method based on image degradation modeling to improve recognition performance on low-quality images. Using an image degradation model, it generates a set of classifiers each of which is specialized for a specific image quality. In recognition, it combines the results of the recognizers by weighted averaging to decide the final result. At this time, the weight of each recognizer is dynamically decided from the estimated quality of the input image. It assigns large weight to the recognizer specialized to the estimated quality of the input image, but small weight to other recognizers. As the result, it can effectively adapt to image quality variation. Moreover, being a multiple-classifier system, it shows more reliable performance then the single-classifier system on low-quality images. In the experiment, the proposed multiple-classifier combination method achieved higher recognition rate than multiple-classifier combination systems not considering the image quality or single classifier systems considering the image quality.

A Transfer Learning Method for Solving Imbalance Data of Abusive Sentence Classification (욕설문장 분류의 불균형 데이터 해결을 위한 전이학습 방법)

  • Seo, Suin;Cho, Sung-Bae
    • Journal of KIISE
    • /
    • v.44 no.12
    • /
    • pp.1275-1281
    • /
    • 2017
  • The supervised learning approach is suitable for classification of insulting sentences, but pre-decided training sentences are necessary. Since a Character-level Convolution Neural Network is robust for each character, so is appropriate for classifying abusive sentences, however, has a drawback that demanding a lot of training sentences. In this paper, we propose transfer learning method that reusing the trained filters in the real classification process after the filters get the characteristics of offensive words by generated abusive/normal pair of sentences. We got higher performances of the classifier by decreasing the effects of data shortage and class imbalance. We executed experiments and evaluations for three datasets and got higher F1-score of character-level CNN classifier when applying transfer learning in all datasets.

Hangul Recognition Using a Hierarchical Neural Network (계층구조 신경망을 이용한 한글 인식)

  • 최동혁;류성원;강현철;박규태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.11
    • /
    • pp.852-858
    • /
    • 1991
  • An adaptive hierarchical classifier(AHCL) for Korean character recognition using a neural net is designed. This classifier has two neural nets: USACL (Unsupervised Adaptive Classifier) and SACL (Supervised Adaptive Classifier). USACL has the input layer and the output layer. The input layer and the output layer are fully connected. The nodes in the output layer are generated by the unsupervised and nearest neighbor learning rule during learning. SACL has the input layer, the hidden layer and the output layer. The input layer and the hidden layer arefully connected, and the hidden layer and the output layer are partially connected. The nodes in the SACL are generated by the supervised and nearest neighbor learning rule during learning. USACL has pre-attentive effect, which perform partial search instead of full search during SACL classification to enhance processing speed. The input of USACL and SACL is a directional edge feature with a directional receptive field. In order to test the performance of the AHCL, various multi-font printed Hangul characters are used in learning and testing, and its processing its speed and and classification rate are compared with the conventional LVQ(Learning Vector Quantizer) which has the nearest neighbor learning rule.

  • PDF

Scene Text Recognition Performance Improvement through an Add-on of an OCR based Classifier (OCR 엔진 기반 분류기 애드온 결합을 통한 이미지 내부 텍스트 인식 성능 향상)

  • Chae, Ho-Yeol;Seok, Ho-Sik
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1086-1092
    • /
    • 2020
  • An autonomous agent for real world should be able to recognize text in scenes. With the advancement of deep learning, various DNN models have been utilized for transformation, feature extraction, and predictions. However, the existing state-of-the art STR (Scene Text Recognition) engines do not achieve the performance required for real world applications. In this paper, we introduce a performance-improvement method through an add-on composed of an OCR (Optical Character Recognition) engine and a classifier for STR engines. On instances from IC13 and IC15 datasets which a STR engine failed to recognize, our method recognizes 10.92% of unrecognized characters.

Training Data Sets Construction from Large Data Set for PCB Character Recognition

  • NDAYISHIMIYE, Fabrice;Gang, Sumyung;Lee, Joon Jae
    • Journal of Multimedia Information System
    • /
    • v.6 no.4
    • /
    • pp.225-234
    • /
    • 2019
  • Deep learning has become increasingly popular in both academic and industrial areas nowadays. Various domains including pattern recognition, Computer vision have witnessed the great power of deep neural networks. However, current studies on deep learning mainly focus on quality data sets with balanced class labels, while training on bad and imbalanced data set have been providing great challenges for classification tasks. We propose in this paper a method of data analysis-based data reduction techniques for selecting good and diversity data samples from a large dataset for a deep learning model. Furthermore, data sampling techniques could be applied to decrease the large size of raw data by retrieving its useful knowledge as representatives. Therefore, instead of dealing with large size of raw data, we can use some data reduction techniques to sample data without losing important information. We group PCB characters in classes and train deep learning on the ResNet56 v2 and SENet model in order to improve the classification performance of optical character recognition (OCR) character classifier.

Development of character recognition system for the mixed font style in the steel processing material

  • Lee, Jong-Hak;Park, Sang-Gug;Park, Soo-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1431-1434
    • /
    • 2005
  • In the steel production line, the molten metal of a furnace is transformed into billet and then moves to the heating furnace of the hot rolling mill. This paper describes about the development of recognition system for the characters, which was marked at the billet material by use template-marking plate and hand written method, in the steel plant. For the recognition of template-marked characters, we propose PSVM algorithm. And for the recognition of hand written character, we propose combination methods of CCD algorithm and PSVM algorithm. The PSVM algorithm need some more time than the conventional KLT or SVM algorithm. The CCD algorithm makes shorter classification time than the PSVM algorithm and good for the classification of closed curve characters from Arabic numerals. For the confirmation of algorithm, we have compared our algorithm with conventional methods such as KLT classifier and one-to-one SVM. The recognition rate of experimented billet characters shows that the proposing PSVM algorithm is 97 % for the template-marked characters and combinational algorithm of CCD & PSVM is 95.5 % for the hand written characters. The experimental results show that our proposing method has higher recognition rate than that of the conventional methods for the template-marked characters and hand written characters. By using our algorithm, we have installed real time character recognition system at the billet processing line of the steel-iron plant.

  • PDF