• 제목/요약/키워드: char burnout

검색결과 5건 처리시간 0.692초

순산소 미분탄 연소 CFD 연구에 사용되는 촤 반응속도 모델의 적절한 사용에 대한 연구 (On the Proper Use of Char Reaction Kinetic Model in CFD Code for Oxy-PC Combustion)

  • 김대희;최상민
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.67-70
    • /
    • 2012
  • Many computational fluid dynamic (CFD) simulations have treated the coal kinetics poorly due to large physical domain sizes and high computational complexity, particularly for the recent oxy-coal boilers. Furthermore, some modelers' lack of understanding of the kinetic rate model seems to worsen the simulation accuracy. This study is to suggest the importance of proper use of single-film global kinetic model generally used in CFD code to describe the oxy-fuel combustion of coal char through simple char burnout calculation.

  • PDF

탈휘발 예측 코드를 활용한 탈휘발 및 촤반응 모델 평가 (Evaluation of the Structural Coal Combustion Model in a Swirling Pulverized Coal Combustor)

  • 정대로;한가람;허강열;박호영
    • 한국연소학회지
    • /
    • 제17권2호
    • /
    • pp.32-39
    • /
    • 2012
  • In this study, pre-processor code based on structural behavior of coal is applied to predict yields, pyrolysis rate and compositions of volatile and char. These parameters are used in the devolatilization and char burnout sub-models as user-defined functions of commercial CFD code. The predicted characteristics of these sub-models are compared with those employing the conventional model based on experiment and validated against the measurement of a 2.1 MW swirling pulverized coal flame in a semi-industrial scale furnace. And the influence of the turbulence-chemistry interaction on pulverized coal combustion is analyzed.

민코 아역청탄의 순산소 연소특성 (Combustion Characteristics of Minco Sub-bituminous Coal at Oxy-Fuel Conditions)

  • 김재관;이현동;장석원;김성철
    • 한국연소학회지
    • /
    • 제14권2호
    • /
    • pp.1-9
    • /
    • 2009
  • New way to effectively capture $CO_2$ in coal fired power plant is the combustion of coal using oxy-fuel technology. Combustion characteristics of Minco sub-bituminous coal at oxy-fuel conditions using TGA and drop tube furnace (DTF) were included activation energy about the char burnout, volatile yield and combustion efficiency of raw coal, the porosity of pyrolyzed char and fusion temperature of by-product ash. TGA result shows that the effect of $CO_2$ on combustion kinetics reduces activation energy by approximately 7 kJ/mol at air oxygen level(21% $O_2$) and decreases the burning time by approximately 16%. The results from DTF indicated similar combustion efficiency under $O_2/CO_2$ and $O_2/N_2$ atmospheres for equivalent $O_2$ concentration whereas high combustion efficiency under $O_2/N_2$ than $O_2/CO_2$ was obtained for high temperature of more than $1,100^{\circ}C$. Overall coal burning rate under $O_2/CO_2$ is decreased due to the lower rate of oxygen diffusion into coal surface through the $CO_2$ rich boundary layer. By-product ash produced under $O_2/CO_2$ and $O_2/N_2$ was similar IDT in irrelevant to $O_2$ concentration and atmospheres gas during the coal combustion.

  • PDF

순산소 분위기에서 촤 연소 및 질소산화물 배기특성 비교 (Comparative Study of Char Burn-Out and NOx Emissions in O2/N2 and O2/CO2 environments)

  • 이천성;김성곤;이병화;장영준;전충환;송주헌
    • 에너지공학
    • /
    • 제20권3호
    • /
    • pp.191-199
    • /
    • 2011
  • 본 연구에서는 Drop Tube Furnace(DTF)를 이용한 $O_2/N_2$, $O_2/CO_2$ 조건에서 산소 농도(12, 21, 31%)에 따른 아역청탄 입자의 연소특성 및 질소산화물 배출특성에 관한 실험과 수치해석을 수행하였다. $O_2/N_2$, $O_2/CO_2$ 조건에서 산소 농도가 증가함에 따라 촤 연소율이 증가하였고 $O_2/CO_2$ 조건하에서 이산화탄소 경계층에서 석탄입자 표면으로의 산소 확산계수가 낮아지기 때문에 촤 연소율이 감소하였다. 산소 농도가 증가함에 따라 배출되는 NO의 농도는 증가하지만 완전 연소 조건인 31%의 산소 농도에서는 오히려 NO의 농도가 감소하였다. 반면, NO 배출 지수는 산소가 증가함에 따라 점차 감소하였다. $O_2/CO_2$ 조건에서 NO의 농도는 Thermal NO의 결여로 인해 $O_2/N_2$ 조건보다 작게 나타났다.

미분탄 연소에서 NOx 저감을 위한 공기다단의 효과 (Effect of Air Staging on NOx Reduction in Pulverized Coal Combustion)

  • 장길홍;장인갑;선칠영;천무관;양관모
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1999년도 제19회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.149-154
    • /
    • 1999
  • The influences of air staging on NOx emission and burnout of coal flames were investigated using 1MWth combustion test facility. The experiments showed that variation of overall excess air ratio led to a relatively higher NOx emission level for ${\lambda}=1.2.$ When air staging was applied to the combustion air, it was confirmed that a fuel rich primary combustion zone was established and unburned char was burened completely by mixing with the staged air supplied radially around the flame. The NOx emissions were redued by increasing the staged air flow rate, and staging air was suggested to be more than 40% of the total combustion air for the substantial NOx reduction.

  • PDF