• Title/Summary/Keyword: channel vegetation

Search Result 166, Processing Time 0.026 seconds

Discharge Computation from Float Measurement in Vegetated Stream (부자 측정 시 식생을 고려한 유량산정에 관한 연구)

  • Lee, Tae Hee;Jung, Sung Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.2
    • /
    • pp.307-316
    • /
    • 2019
  • Development of vegetation in stream channel increases resistance to flow, resulting in increase in river stage upon flood and affecting change in stage-discharge relationship. Vegetation revealed in stream by water level reaching a peak and then declined upon flood is mostly found as prone. Taking an account of flow distribution with the number of vegetation, prone vegetation layer might be at height where discharge rate is zero (0) (Stephan and Guthnecht, 2002). However, there is a tendency that flow rate is overestimated when applying the height of river bed to flow area with no consideration of the height of vegetation layer in flow rate by float measurement. In this study, reliable flow measurement in stream with vegetation was calculated by measuring the height of vegetation layer after flood and excluding the vegetation layer-projected area from the flow area. The result showed the minimum 4.34 % to maximum 10.82 % of flow deviation depending on the scale of discharge. Accordingly, reliable velocity-area methods would be determined if vegetation layer-projected area in stream is considered in flow rate estimation using the flow area during the flood.

Numerical Simulation of Flow Characteristics behind a Circular Patch of Vegetation using a Two-Dimensional Numerical Model (2차원 수치모형을 이용한 원형군락 하류의 흐름특성 수치모의)

  • Kim, Hyung Suk;Park, Moonhyeong
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.11
    • /
    • pp.891-903
    • /
    • 2015
  • This paper presents numerical simulations of flow around a circular patch of vegetation using a depth-averaged two-dimensional numerical model which is capable of simulating flow structure in vegetated open channel. In order to account for vegetation effect, drag force terms are included in governing equations. Numerical simulations are conducted with various solid volume fractions (SVF). Flow passes through a circular patch and low velocity region, which is called wake region, is formed downstream of the patch. When SVF is larger than 0.08, a recirculation is observed. The location of the recirculation is moved further downstream as SVF decreases. Von-$K{\acute{a}}rm{\acute{a}}n$ vortex street is developed beyond the wake region due to interaction between two shear layers induced by a circular patch of vegetation. The vortex is developed as SVF is larger than 0.08, and the location of the vortex is consistent with the maximum of turbulence kinetic energy. The location of the peak of turbulence kinetic energy is moved further downstream as SVF decreases.

Riparian Vegetation Expansion Due to the Change of Rainfall Pattern and Water Level in the River (강우 발생 패턴변화와 하천 수위 변화가 하천식생 발생에 미치는 영향)

  • Kim, Won;Kim, Sinae
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.4
    • /
    • pp.238-247
    • /
    • 2020
  • This study aims to examine the causes of the rapid expansion of riparian vegetation in river channels in recent years. Accordingly, the changes in the monthly rainfall were analyzed at 19 locations over the period of 1984 to 2018. Moreover, the changes in the water levels of the target river sections of Seom River, Cheongmi River, and Naeseong River were analyzed. The results showed that rainfall increased by 30% in April and decreased by up to 49% in the May-September period since 2012. Between 2012 and 2018, when rainfall decreased, the inundation time of the floodplains of the target rivers decreased considerably. The floodplains of Seom River and Cheongmi River were not inundated since 2012 and 2013, respectively. In the case of Naeseong River, the inundation time of the low-water channel drastically decreased since 2013, and there was no inundation in 2015. Consequently, riparian vegetation settled rapidly on the floodplain without any disturbance and continued to expand. The settling and expansion of riparian vegetation reduce the flood capacity of the river channel and can also lead to the loss of the water ecosystem due to terrestrialization.

Spatial Variations of Salt Marsh Plants Induced by Sandy Sediment in Hampyeong Tidal Flat (함평만 갯벌의 모래 퇴적물로 인한 염습지 식물의 공간적 변이)

  • Minki, Hong;Jaeyeon, Lee;Jeong-Soo, Park;Hyohyemi, Lee
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.4
    • /
    • pp.247-258
    • /
    • 2022
  • Hampyeong Bay has a narrow seawater channel and a complex topographical structure. The sand content of the tidal flat soil is increasing due to asymmetrical sedimentation. Through the investigation of the vegetation distribution and the use of the line-transect method, sand flats were observed to gradually change the vegetation distribution of salt marshes. Comparing the vegetation area between 2016 and 2022, the obligate halophyte Suaeda maritima decreased by 74% and Zoysia sinica increased by 75%. Z. sinica seems to support the robustness of the dune environment by trapping sediments such as sand in the colony, because the underground rhizomes and stems are highly developed. To establish an effective conservation management plan for tidal flats, an integrated study should be conducted to assess the impact of changes in tidal flat soil and the interaction of vegetation communities in Hampyeong Bay.

Vegetation Structure in Otter (Lutra lutra) Home Range of Hwacheon, Gangwon-do (강원도 화천군 수달(Lutra lutra) 서식지의 식생 구조)

  • Seo, Hyungsoo;Shin, Youngseob;Lee, Kyungeun;Kim, Yoonmi;Jeon, Mina;Nam, Taek-Woo;Han, Sung-Yong;Choung, Yeonsook
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.spc
    • /
    • pp.66-73
    • /
    • 2014
  • In order to determine whether vegetation would be one of the factors for the selection of otter home range, vegetation structure and other potential factors were studied in Hwacheon, Korea. Thirteen sites, otter's activity found and not found, were investigated in North Han River and connected tributary streams of Hwacheon-gun. Three types of vegetation were classified by cluster analysis, which is short grass, tall grass and shrub type. Vegetation zone of each channel is composed of either one type, or mosaic of tall grass and shrub type. Short grass type is common in Lake Paro and upper North Han-river where water level is highly variable throughout a year. Therefore, annual species such as Persicaria nodosa, Fimbristylis dichotomam and Chenopodium ficifolium are the most dominant. Shrub type is common at the downstream sites of Jichon stream and along mainstream of North Han River down Lake Paro. A shrub species, Salix koreensis, is the most common. Tall grass type is dominant occupying the most vegetation zone of the tributary channels. Phragmites japonica is absolutely dominant. Due to its dense cover, a few plant species are co-existed. Otter activity was found in all three vegetation types and no marked activity was found at some sites of tall grass type. There is no difference in species composition and physiognomy between tall grass sites with and without otter activity, while it shows significant difference in fish availability between two groups. Overall we found that home range of otters in the region is along the mainstream and downstream of tributary streams with high fish availability in all vegetation types and in various human activity levels.

Estimation for River Naturality in the Hwang River (황강 수생태계에 대한 하천 자연도 평가 연구)

  • Huh, Man-Kyu
    • Journal of Environmental Science International
    • /
    • v.22 no.2
    • /
    • pp.195-203
    • /
    • 2013
  • I investigated the river morphology and river naturality according to the environment of the Hwang River. The numbers of flexions at the upstream regions were more than those of downstream regions. The Hwang River showed very low overall diversity of the flow. Materials of river shore at low channel width were mainly boulders or gravel at the upstream regions, and the middle and downstream were silts and clay. Artificial masonry and natural materials were mixed from materials of river levees. The Hwang River was some of the natural herbaceous vegetation to riparian zones. Land utilities for floodplain were extremely overall farmland were predominant, and partly used by natural vegetation in the forest, a soccer field, some park facilities, residential, and commercial facilities. The water was width sleep / rivers beam ratio of 10 to 20%. Currently estimation for river naturality widely used in rivers were consisted of a narrow wide a variety of items and did not reflect the actual.

Hydraulic Application of Grass Concrete In River Environment (하천환경에서의 그라스콘크리트의 적용성 연구)

  • Jang, Suk-Hwan;Nam, Yong-Hyuk;Kim, Seo-Young;Park, Seong-Beom;Park, Ung-Seo;Park, Sang-Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.472-477
    • /
    • 2006
  • This study aims at investigating the failure cases of the pre-cast block system in river environments which widely used nowadays and reviewing the effect and flow resistance for grass concrete structure through the physical experiments by hydraulic model test and developing application method in river slope or levee which has rigid flood resistance. Grass concrete structure has been independently tested under high velocity flow under the super critical condition, it survived the 8 m/sec maximum flow velocity. This results shows grass concrete system is also suited to use in aggressive river environments such as repairing a flood damaged embankment that had placed at risk the adjacent drainage channel with vegetation.

  • PDF

A Study on the Planning Elements for Ecological Restoration of Urban Stream through Present Condition Analysis - focused on the Yeocheon and the Mugeo stream - (현황분석을 통한 도시 소하천의 생태하천 계획요소에 관한 연구 -울산광역시 무거.여천천을 중심으로-)

  • Kim, Seong Cheol;Lee, Cheol Yeong
    • Journal of Environmental Science International
    • /
    • v.13 no.9
    • /
    • pp.747-757
    • /
    • 2004
  • The objectives of this study were to investigate the physical, chemical, and structural characteristics of the stream, especially Mugeo and Yeochon which are being changed to ecological stream by Ulsan city, and to acquire the considerations such as the planning element and plan criteria of the streams for making ecological stream system. Water quality, water quantity, vegetation, in stream structures and facilities, and land usage of the streams were investigated and the build up capabilities of ecological stream for the two streams were also analyzed. Planning elements for restoration to ecological stream included physical and biological purification methods in water quality, short term water acquire alternatives in water quantity, and vegetation recovery plan and improvement of habitation environment in ecological system, respectively. Planing elements in physical structures and facilities also included recovery of concrete levee and removal and recovery of covered channel.

A Study on Roughness Characteristics in Vegetated Channels (식생 수로에서의 조도특성에 관한 연구)

  • Kim, byeong-chan;Kim, chi-gon;Park, sang-bum;Lee, jong-seok
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2008.05a
    • /
    • pp.776-779
    • /
    • 2008
  • In Korea, as in other advanced countries, interest in natural stream preservation has been increasing. Accordingly, it is certain that stream vegetation, as an important indicator of the natural environment, will have a place in the base knowledge of stream ecology. In this study, investigate current stream channel planning and management regarding stream vegetation in paper.

  • PDF

An initial study on ecological environment changes after emergent water transportation at lower reaches of Tarim River, China based on remote sensing technique

  • Jianli, Zhang;Lin, Li;Longjiang, Du
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.313-315
    • /
    • 2003
  • Tarim River is the longest continental river in China. Its downstream ecological environment declination and valley remedy got great concern. To improve ecological environment of lower Tarim River, “Emergent water transportation project for Tarim river valley remedy” was carried out from May 2000. Water was transported five times till May 2003. Several periods MODIS image was used to monitor water body in river channel. Two periods ETM image was used to interpreter changes of environment. Area of vegetation in 1999 was similar with 2001, but become better in total. The normalized difference vegetation index (NDVI) and vegetative coverage reflected environment changed better.

  • PDF