• Title/Summary/Keyword: channel vegetation

Search Result 166, Processing Time 0.069 seconds

Introduction to Simulation Activity for CMDPS Evaluation Using Radiative Transfer Model

  • Shin, In-Chul;Chung, Chu-Yong;Ahn, Myoung-Hwan;Ou, Mi-Lim
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.282-285
    • /
    • 2007
  • Satellite observed brightness temperature simulation using a radiative transfer model (here after, RTM) is useful for various fields, for example sensor design and channel selection by using theoretically calculated radiance data, development of satellite data processing algorithm and algorithm parameter determination before launch. This study is focused on elaborating the simulation procedure, and analyzing of difference between observed and modelled clear sky brightness temperatures. For the CMDPS (COMS Meteorological Data Processing System) development, the simulated clear sky brightness temperatures are used to determine whether the corresponding pixels are cloud-contaminated in cloud mask algorithm as a reference data. Also it provides important information for calibrating satellite observed radiances. Meanwhile, simulated brightness temperatures of COMS channels plan to be used for assessing the CMDPS performance test. For these applications, the RTM requires fast calculation and high accuracy. The simulated clear sky brightness temperatures are compared with those of MTSAT-1R observation to assess the model performance and the quality of the observation. The results show that there is good agreement in the ocean mostly, while in the land disagreement is partially found due to surface characteristics such as land surface temperature, surface vegetation, terrain effect, and so on.

  • PDF

A Study on Vegetation Expansion Process by Soil Survey in the Sand Bar of Movable Channel (이동상 하도의 모래사주에서 토양조사를 통한 식생역 발달과정의 평가)

  • Lee, Sam-Hee;Ock, Gi-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1058-1062
    • /
    • 2007
  • 본 연구에서 이동상 모래하천에서 식생의 변화과정을 연구하였다. 연구 대상 하천은 낙동강 상류 하회지구를 대상으로 하였다. 이 지역은 우리나라에서 대표적인 모래하천으로서 지형적인 요인으로 형성된 사행하천의 만곡부에 해당하고 있다. 특히 상류에 댐과 취수보 등 수자원개발시설이 건설되면서 수십 년 동안 물과 유사의 공급이 조절되어 안동시권역에서부터 하류방향으로 향하면서 점차 바뀌어 가고 있는 실정이다. 이 가운데, 이동성을 지니고 있던 사주부에 식생이 유입되고, 식생역이 확장되면서 사주가 고정화되는 경향을 보이고 있다. 이러한 이동상 하도에서 이동사주내 식생역의 발달과정을 파악하기 위하여 사주내 토양의 물리화학적 조사를 수행하였다. 연구 결과, 안동 하회지구내 모래사주에서 식생이 정착 발달 확장 되어가는 과정을 파악할 수 있었다. 하회지구의 식생역의 발달은 시기적으로 홍수기와 비홍수기의 반복적인 출현에 영향을 받고 있었다. 그리고 공간적으로는 홍수기 동안의 유사의 퇴적과 세굴과정과 밀접한 관련이 있는 것을 확인할 수 있었다. 식생역의 확장과정은 이러한 시공간적 상황으로 인해 유발되는 토양의 물리화학적 특성과 높은 상관성이 있음을 확인할 수 있었다.

  • PDF

Floral Changes During Three Years After Cheonggyecheon Restoration (청계천 복원 후 3년간 식물상 변화)

  • Kim, Hyeong-Guk;Koo, Bon-Hak
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.6
    • /
    • pp.107-115
    • /
    • 2010
  • This study was surveyed to identify changes of flora during three years after restoration in Cheonggyecheon stream. There are four sections in Cheonggyecheon. One and two sections are upper streams and three and four sections are down streams. It was surveyed 328 species in 2006. In 2007 and 2008, 446 and 444 species were found, respectively. This result shows that Cheonggyecheon is unstable initial condition in restored stream ecosystem. Naturalized species were 58 species in 2006 and it was respectively 61 and 63 species in 2007 and 2008. Hazard species of ecosystem were three common species during survey period. In appearance of flora per section, three and four sections constituted by natural sites such as point bars, wide flood plains, riffles and ponds, marshes, etc. were surveyed more species than one and two constructed by concrete materials and narrow flow channel. Recently, as time goes by, introduced species are being increased. And succession has mainly been progressed by one year or binary herbs and perennial herbs. Compared with other restored streams, Cheonggyecheon showed more flora than Yangjaecheon and Anyangcheon. It is judged owing to length of surveyed site, various planted species and area of inhabitation space. To manage restored stream ecosystem, monitoring is essential. Further, because change of vegetation after restoration in Cheonggyecheon is very important, continuous monitoring about Flora and Naturalized species and Hazard species of ecosystem is also very important.

An estimation of surface reflectance for Advanced Himawari Imager (AHI) data using 6SV

  • Seong, Noh-hun;Lee, Chang Suk;Choi, Sungwon;Seo, Minji;Lee, Kyeong-Sang;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.1
    • /
    • pp.67-71
    • /
    • 2016
  • The surface reflectance is essential to retrieval various indicators related land properties such as vegetation index, albedo and etc. In this study, we estimated surface reflectance using Himawari-8 / Advanced Himawari Imager (AHI) channel data. In order to estimate surface reflectance from Top of Atmosphere (TOA) reflectance, the atmospheric correction is necessary because all of the TOA reflectance from optical sensor is affected by gas molecules and aerosol in the atmosphere. We used Second Simulation of a Satellite Signal in the Solar Spectrum Vector (6SV) Radiative Transfer Model (RTM) to correct atmospheric effect, and Look-Up Table (LUT) to shorten the calculation time. We verified through comparison Himawri-8 / AHI surface reflectance and Proba-V S1 products. As a result, bias and Root Mean Square Error (RMSE) are calculated about -0.02 and 0.05.

Comparison the Variability of Multi-channel Soil Moisture Data Using PSR C-band and ESTAR L-band Estimates (PSR C-band 및 ESTAR L-band 측정치를 사용한 다중 채널 원격측정 토양수분 자료의 변화도 비교)

  • Kim, Gwangseob
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4B
    • /
    • pp.329-334
    • /
    • 2006
  • The spatial variability of the L- and C- band large scale remotely sensed soil moisture data, obtained during the Southern Great Plain 1999 Experiment (SGP'99), was characterized. The results demonstrate that soil moisture data using L-band show the break in statistical symmetry (multiscaling behavior) with the variation of scale of observation, which is similar to that of the soil property such as sand content. Also, soil moisture data using C-band show single scaling behavior with the variation of scale of observation, which is similar to that of the vegetation condition. The results should be considered during downscaling the Global soil moisture data using AMSR instrument.

Channel Changes and Effect of Flow Pulses on Hydraulic Geometry Downstream of the Hapcheon Dam (합천댐 하류 하천지형 변화 예측 및 흐름파가 수리기하 변화에 미치는 영향)

  • Shin, Young-Ho;Julien, Pierre Y.
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.7
    • /
    • pp.579-589
    • /
    • 2009
  • Hwang River in South Korea, has experienced channel adjustments due to dam construction. Hapcheon main dam and re-regulation dam. The reach below the re-regulation dam (45 km long) changed in flow regime, channel width, bed material distribution, vegetation expansion, and island formation after dam construction. The re-regulation dam dramatically reduced annual peak flow from 654.7 $m^3$/s to 126.3 $m^3$/s and trapped the annual 591 thousand $m^3$ of sediment load formerly delivered from the upper watershed since the completion of the dam in 1989. An analysis of a time series of aerial photographs taken in 1982, 1993, and 2004 showed that non-vegetated active channel width narrowed an average of 152 m (47% of 1982) and non-vegetated active channel area decreased an average of 6.6 km2 (44% of 1982) between 1982 and 2004, with most narrowing and decreasing occurring after dam construction. The effects of daily pulses of water from peak hydropower generation and sudden sluice gate operations are investigated downstream of Hapcheon Dam in South Korea. The study reach is 45 km long from the Hapcheon re-regulation Dam to the confluence with the Nakdong River. An analysis of a time series of aerial photographs taken in 1982, 1993, and 2004 showed that the non-vegetated active channel width narrowed an average of 152 m (47% reduction since 1982). The non-vegetated active channel area also decreased an average of 6.6 $km^2$ (44% reduction since 1982) between 1982 and 2004, with most changes occurring after dam construction. The average median bed material size increased from 1.07 mm in 1983 to 5.72 mm in 2003, and the bed slope of the reach decreased from 0.000943 in 1983 to 0.000847 in 2003. The riverbed vertical degradation is approximately 2.6 m for a distance of 20 km below the re-regulation dam. It is expected from the result of the unsteady sediment transport numerical model (GSTAR-1D) steady simulations that the thalweg elevation will reach a stable condition around 2020. The model also confirms the theoretical prediction that sediment transport rates from daily pulses and flood peaks are 21 % and 15 % higher than their respective averages.

A Study on the Extraction of a River from the RapidEye Image Using ISODATA Algorithm (ISODATA 기법을 이용한 RapidEye 영상으로부터 하천의 추출에 관한 연구)

  • Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.4
    • /
    • pp.1-14
    • /
    • 2012
  • A river is defined as the watercourse flowing through its channel, and the mapping tasks of a river plays an important role for the research on the topographic changes in the riparian zones and the research on the monitoring of flooding in its floodplain. However, the utilization of the ground surveying technologies is not efficient for the mapping tasks of a river due to the irregular surfaces of the riparian zones and the dynamic changes of water level of a river. Recently, the spatial information data sets are widely used for the coastal mapping tasks due to the acquisition of the topographic information without human accessibility. In this research, we tried to extract a river from the RapidEye imagery by using the ISODATA(Iterative Self_Organizing Data Analysis) classification algorithm with the two different parameters(NIR (Near Infra-Red) band and NDVI(Normalized Difference Vegetation Index)). First, the two different images(the NIR band image and the NDVI image) were generated from the RapidEye imagery. Second, the ISODATA algorithm were applied to each image and each river was generated in each image through the post-processing steps. River boundaries were also extracted from each classified image using the Sobel edge detection algorithm. Ground truths determined by the experienced expert are used for the assessment of the accuracy of an each generated river. Statistical results show that the extracted river using the NIR band has higher accuracies than the extracted river using the NDVI.

Improvement of Functional Assessment for Riverine Wetlands using HGM Approach (HGM 적용을 통한 하도습지의 기능평가 제고 방안 연구)

  • Yeum, Junghun;Kim, Taesung
    • Journal of Wetlands Research
    • /
    • v.18 no.4
    • /
    • pp.378-385
    • /
    • 2016
  • This study aims to suggest the framework of functional assessment on lotic area based on HGM(Hydrogeomorphic) approach targeting Wetland Protected Areas which are in the type of river channel, and to set up the fundamental data as a reference wetland. A total of 10 factors in terms of hydrology, biogeochemistry, plant habitat and animal habitat was analyzed based on the original approach of HGM and each Functional Capacity Index(FCI) of those factors was calculated. As the result of the modified FCI analysis, Damyang riverine wetland which is with artificial river bank had high values in the variables of area ratio of actual vegetation in the foreland, the number of plant per area and the area ratio of Salix spp., and those values were highly reflected on the factors of Nutrient Cycling(947,668.00), Species Richness and Maintain Characteristic Plant Communites(6.39) and Maintain Spatial Structure of Habitat(11.00). The Hanbando wetland which is keeping the natural bank had higher values in the variables of structural scale and species diversity, and the those values were highly reflected on the factors of Energy Dissipation(17,805.16), Subsurface Storage of Water(0.54), Removal of Imported Elements and Compounds(103,052.73), Maintain Characteristic Detrital Biomass(2.31), Maintenance of Interspersion and Connectivity (6.50), Species Diversity of Benthic macro-invertebrates(1.60) and Species Diversity of Vertebrate & Species Number of Other Animals(2.52/ 151.50), compared to the Damyang Riverine Wetland.

An Analysis of Spectral Characteristic Information on the Water Level Changes and Bed Materials (수위변화에 따른 하상재료의 분광특성정보 분석)

  • Kang, Joongu;Lee, Changhun;Kim, Jihyun;Ko, Dongwoo;Kim, Jongtae
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.4
    • /
    • pp.243-249
    • /
    • 2019
  • The purpose of this study is to analyze the reflectance of bed materials according to changes in the water level using a drone-based hyperspectral sensor. For this purpose, we took hyperspectral images of bed materials such as soil, gravel, cobble, reed, and vegetation to compare and analyze the spectral data of each material. To adjust the water level, we constructed an experimental channel to control the discharge and installed the bed materials within the channel. In this study, we configured 3 cases according to the water level (0.0 m, 0.3 m, 0.6 m). After the imaging process, we used the mean value of 10 points for each bed material as analytical data. According to the analysis, each material showed a similar reflectance by wavelength and the intrinsic reflectance characteristics of each material were shown in the visible and near-infrared region. Also, the deeper the water level, the lower the peak reflectance in the visible and near-infrared region, and the rate of decrease differed depending on the bed material. We expect the intrinsic properties of these bed materials to be used as basic research data to evaluate river environments in the future.

Analysis of Flow Velocity in the Channel according to the Type of Revetments Blocks Using 3D Numerical Model (3차원 수치모델을 활용한 호안 블록 형상에 따른 하도 내 유속 분석)

  • Dong Hyun Kim;Su-Hyun Yang;Sung Sik Joo;Seung Oh Lee
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.4
    • /
    • pp.9-18
    • /
    • 2023
  • Climate change affects the safety of river revetments, especially those associated with external flooding. Research on slope reinforcement has been actively conducted to enhance revetment safety. Recently, technologies for producing embankment blocks using recycled materials have been developed. However, it is essential to analyze the impact of block shapes on the flow characteristics of exclusion zones for revetment safety. Therefore, this study investigates the influence of revetment block shapes on the hydraulic characteristics of revetment surfaces through 3D numerical simulations. Three block shapes were proposed, and numerical analyses were performed by installing the blocks in an idealized river channel. FLOW-3D was used for the 3D numerical simulations, and the variations in maximum flow velocity, bed velocity beneath the revetment, and maximum shear stress were analyzed based on the shapes of the revetment blocks. The results indicate that for irregularly sized and spaced revetment blocks, such as the natural stone-type vegetation block (Block A), when connected to the revetment in an irregular manner, the changes in flow velocity in the revetment installation zone are more significant than those for Blocks B and C. It is anticipated that considering the topographical characteristics of rivers in the future will enable the design of revetment blocks with practical applicability in the field.