• Title/Summary/Keyword: channel utilization

Search Result 462, Processing Time 0.028 seconds

Channel Prediction-Based Channel Allocation Scheme for Multichannel Cognitive Radio Networks

  • Lee, Juhyeon;Park, Hyung-Kun
    • Journal of Communications and Networks
    • /
    • v.16 no.2
    • /
    • pp.209-216
    • /
    • 2014
  • Cognitive radio (CR) has been proposed to solve the spectrum utilization problem by dynamically exploiting the unused spectrum. In CR networks, a spectrum selection scheme is an important process to efficiently exploit the spectrum holes, and an efficient channel allocation scheme must be designed to minimize interference to the primary network as well as to achieve better spectrum utilization. In this paper, we propose a multichannel selection algorithm that uses spectrum hole prediction to limit the interference to the primary network and to exploit channel characteristics in order to enhance channel utilization. The proposed scheme considers both the interference length and the channel capacity to limit the interference to primary users and to enhance system performance. By using the proposed scheme, channel utilization is improved whereas the system limits the collision rate of the CR packets.

Performance Analysis of CMAP-WDMA MAC Protocol for Metro-WDMA Networks

  • Yun, Chang-Ho;Cho, A-Ra;Park, Jong-Won;Lim, Yong-Kon
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.4
    • /
    • pp.480-488
    • /
    • 2009
  • A channel-shared modified accelerative pre-allocation wavelength division multiple access (CMAP-WDMA) media access control (MAC) has been proposed for metro-WDMA networks, as an extension of modified pre-allocation wavelength division multiple access (MAP-WDMA) MAC protocol. Similarly, CAP WDMA as an extension of accelerative pre-allocation wavelength division multiple access (AP-WDMA) MAC protocol. Performance of CMAP- and CAP-WDMA was extensively investigated under several channel sharing methods (CSMs), asymmetric traffic load patterns (TLPs), and non-uniform traffic distribution patterns (TDPs). The result showed that the channel utilization of the CMAP-WDMA always outperforms that of CAP-WDMA at the expense of longer channel access delay for channel shared case while CMAP-WDMA provided higher channel utilization at specific network conditions but always shorter channel access delay than CAP-WDMA for non-channel shared case. Additionally both for CMAP- and CAP-WDMA, determining an effective CSM is a critical design issue because TDPs and TLPs can be neither managed nor expected while CSM is manageable, and the CSM supporting the best channel utilization can be recommended.

A Study of MAC Protocol for effective channel usage in Wireless Sensor Networks (무선 센서 네트워크에서 효율적인 채널 사용을 위한 MAC 프로토콜에 관한 연구)

  • Choi, Ji-Hyoung;Kim, Dong-Il
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.371-374
    • /
    • 2007
  • The effective channel usage is important for delivering a large number of packets in a short time, and it enhances channel utilization in sensor networks. Channel utilization is a good metric to illustrate MAC protocol efficiency. This paper presents the MAC(Media Access Control) Protocol that combines the advantages of B-MAC(Berkeley-MAC) and TDMA(Time Division Multiple Access) to obtain high channel utilization. Basically, Using the backoff, CCA(Clear Channel Assessment) and LPL(Low Power Listen) mechanisms reduce collision and energy consumption, this protocol makes at the same time transmission method different depending on contention state and obtains high channel utilization. Through the simulation, this paper shows enhanced performance comparing with existing MAC Protocols.

  • PDF

Cognitive Radio Based Spectrum Sharing: Evaluating Channel Availability via Traffic Pattern Prediction

  • Li, Xiukui;Zekavat, Seyed A. (Reza)
    • Journal of Communications and Networks
    • /
    • v.11 no.2
    • /
    • pp.104-114
    • /
    • 2009
  • In this paper, a technique is proposed that enables secondary users to evaluate channel availability in cognitive radio networks. Here, secondary users estimate the utilization of channels via predicting the traffic pattern of primary user, and select a proper channel for radio transmission. The proposed technique reduces the channel switching rate of secondary users (the rate of switching from one channel to another) and the interference on primary users, while maintaining a reasonable call blocking rate of secondary users.

Uniform Fractional Band CAC Scheme for QoS Provisioning in Wireless Networks

  • Rahman, Md. Asadur;Chowdhury, Mostafa Zaman;Jang, Yeong Min
    • Journal of Information Processing Systems
    • /
    • v.11 no.4
    • /
    • pp.583-600
    • /
    • 2015
  • Generally, the wireless network provides priority to handover calls instead of new calls to maintain its quality of service (QoS). Because of this QoS provisioning, a call admission control (CAC) scheme is essential for the suitable management of limited radio resources of wireless networks to uphold different factors, such as new call blocking probability, handover call dropping probability, channel utilization, etc. Designing an optimal CAC scheme is still a challenging task due to having a number of considerable factors, such as new call blocking probability, handover call dropping probability, channel utilization, traffic rate, etc. Among existing CAC schemes such as, fixed guard band (FGB), fractional guard channel (FGC), limited fractional channel (LFC), and Uniform Fractional Channel (UFC), the LFC scheme is optimal considering the new call blocking and handover call dropping probability. However, this scheme does not consider channel utilization. In this paper, a CAC scheme, which is termed by a uniform fractional band (UFB) to overcome the limitations of existing schemes, is proposed. This scheme is oriented by priority and non-priority guard channels with a set of fractional channels instead of fractionizing the total channels like FGC and UFC schemes. These fractional channels in the UFB scheme accept new calls with a predefined uniform acceptance factor and assist the network in utilizing more channels. The mathematical models, operational benefits, and the limitations of existing CAC schemes are also discussed. Subsequently, we prepared a comparative study between the existing and proposed scheme in terms of the aforementioned QoS related factors. The numerical results we have obtained so far show that the proposed UFB scheme is an optimal CAC scheme in terms of QoS and resource utilization as compared to the existing schemes.

Channel Allocation in Multi-radio Multi-channel Wireless Mesh Networks: A Categorized Survey

  • Iqbal, Saleem;Abdullah, Abdul Hanan;Hussain, Khalid;Ahsan, Faraz
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.5
    • /
    • pp.1642-1661
    • /
    • 2015
  • Wireless mesh networks are a special type of broadcast networks which cover the qualifications of both ad-hoc as well as infrastructure mode networks. These networks offer connectivity to the last mile through hop to hop communication and by comparatively reducing the cost of infrastructure in terms of wire and hardware. Channel assignment has always been the focused area for such networks specifically when using non-overlapping channels and sharing radio frequency spectrum while using multiple radios. It has always been a challenge for mesh network on impartial utilization of the resources (channels), with the increase in users. The rational utilization of multiple channels and multiple radios, not only increases the overall throughput, capacity and scalability, but also creates significant complexities for channel assignment methods. For a better understanding of research challenges, this paper discusses heuristic methods, measurements and channel utilization applications and also examines various researches that yield to overcome this problem. Finally, we highlight prospective directions of research.

Channel Selection Scheme using Statistical Properties in the Cognitive Radio Networks (인지무선 네트워크에서 통계적 특성을 이용한 채널선택기법)

  • Park, Hyung-Kun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.9
    • /
    • pp.1767-1769
    • /
    • 2011
  • In a CR (cognitive radio) network, channel selection is one of the important issues for the efficient channel utilization. When the CR user exploits the spectrum of primary network, the interference to the primary network should be minimized. In this paper, we propose a spectrum hole prediction based channel selection scheme to minimize the interference to the primary network. To predict spectrum hole, statistic properties of primary user's traffic is used. By using the predicted spectrum hole, channel is selected and it can reduce the possibility of interference to the primary user and increase the efficiency of spectrum utilization. The performance of proposed channel selection scheme is evaluated by the computer simulation.

Effective IPTV Channel Control Algorithm Supporting Smooth Channel Zapping (원활한 채널 변경을 지원하는 효율적인 IPTV 채널 관리 알고리즘)

  • Joo, Hyun-Chul;Song, Hwang-Jun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.3B
    • /
    • pp.390-397
    • /
    • 2010
  • This paper presents an effective IPTV channel control algorithm considering network utilization and channel zapping time. The proposed algorithm keeps maximum average channel zapping time of each subscriber in the tolerable range with low network bandwidth usage by adjusting the type of each channel and the number of additional intra frames inserted into each channel. Finally, experimental results are provided to show the performance of the proposed algorithm.

RAVIP: Real-Time AI Vision Platform for Heterogeneous Multi-Channel Video Stream

  • Lee, Jeonghun;Hwang, Kwang-il
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.227-241
    • /
    • 2021
  • Object detection techniques based on deep learning such as YOLO have high detection performance and precision in a single channel video stream. In order to expand to multiple channel object detection in real-time, however, high-performance hardware is required. In this paper, we propose a novel back-end server framework, a real-time AI vision platform (RAVIP), which can extend the object detection function from single channel to simultaneous multi-channels, which can work well even in low-end server hardware. RAVIP assembles appropriate component modules from the RODEM (real-time object detection module) Base to create per-channel instances for each channel, enabling efficient parallelization of object detection instances on limited hardware resources through continuous monitoring with respect to resource utilization. Through practical experiments, RAVIP shows that it is possible to optimize CPU, GPU, and memory utilization while performing object detection service in a multi-channel situation. In addition, it has been proven that RAVIP can provide object detection services with 25 FPS for all 16 channels at the same time.

HMM-based Adaptive Frequency-Hopping Cognitive Radio System to Reduce Interference Time and to Improve Throughput

  • Sohn, Sung-Hwan;Jang, Sung-Jeen;Kim, Jae-Moung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.4
    • /
    • pp.475-490
    • /
    • 2010
  • Cognitive Radio is an advanced enabling technology for the efficient utilization of vacant spectrum due to its ability to sense the spectrum environment. It is important to determine accurate spectrum utilization of the primary system in a cognitive radio environment. In order to define the spectrum utilization state, many CR systems use what is known as the quiet period (QP) method. However, even when using a QP, interference can occur. This causes reduced system throughput and contrary to the basic condition of cognitive radio. In order to reduce the interference time, a frequency-hopping algorithm is proposed here. Additionally, to complement the loss of throughput in the FH, a HMM-based channel prediction algorithm and a channel allocation algorithm is proposed. Simulations were conducted while varying several parameters. The findings show that the proposed algorithm outperforms conventional channel allocation algorithms.