• Title/Summary/Keyword: channel routing model

Search Result 89, Processing Time 0.02 seconds

A new four-layer channel router using the diagonal routing (대각선배선을 사용한 4층 채널배선에 관한 연구)

  • 이병호
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.7
    • /
    • pp.9-17
    • /
    • 1997
  • This paper proposes a routing model based on the HVHD for four-layer routing problems. Differing from the HVHV and HVHH models, the proposed HVHD model permits diagonal routing on the fourth laye rwith a grid of 45.deg., 90.deg. and 135.deg. directions. The developed algorithm which uses a channel-graph including weights routes a layer using diagonal model and the othe rthree layers using HVH model. Applications to several benchmark examples verify that approximately 10~25 percent reduction of channel density can be achieved compared to the conventional four-layer channel routing algorithms.

  • PDF

A Basic Study on the River Basin Routing Using Numerical Analysis (수치해석을 이용한 자연하천의 하도추적에 관한 기초적연구)

  • Kim, Sung Woon;Koh, Byung Ryoun;Koh, Chang Jong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.2
    • /
    • pp.127-139
    • /
    • 1998
  • The objectives of this study is at the development of the channel routing model which can be used for flood prediction. Among the routing models, the hydraulic technique of the implicit scheme in the dynamic equation is selected to route the unsteady varied flow in the open channel. The channel routing model is catchment runoff which computed by the conceptual and transfer function model. The conceptual and transfer function model can simulate the catchment runoff accurately. As a result of investigating the channel routing model, the optimal weighting factor ${\theta}$ which fixes two points between time line is chosen, and also, the optimal error tolerance which satisfies computing time and converge of solution is determined in this study.

  • PDF

Hydrologic Re-Analysis of Muskingum Channel Routing Method: A Linear Combination of Linear Reservoir and Linear Channel Models (Muskingum 하도추적방법의 수문학적 재해석: 선형저수지모형과 선형하천모형의 선형결합)

  • Yoo, Chul-Sang;Kim, Ha-Young
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.12
    • /
    • pp.1051-1061
    • /
    • 2010
  • This study hydrologically re-analysed the Muskingum channel routing method to represent it as a linear combination of the linear channel model considering only the translation and the linear reservoir model considering only the storage effect. The resulting model becomes a kind of instantaneous unit hydrograph, whose parameters are identical to those of the Muskingum model. That is, the outflow occurs after the routing interval ${\Delta}t$ or concentration time $T_c$, and among the total amount of inflow, the x portion is translated by the linear channel model and the remaining (1-x) portion is routed by the linear reservoir model with the storage coefficient ��$K_c$. The application result of both the Muskingum channel routing method and its corresponding instantaneous unit hydrograph to an imaginary channel showed that these two models are basically identical. This result was also assured by the application to the channel flood routing to the Kumnam and Gongju Station for the discharge from the Daechung Dam.

Channel Routing Model for Streamflow Forecasting (유출예측을 위한 하도추적 모형)

  • 지홍기;박기호
    • Water for future
    • /
    • v.27 no.1
    • /
    • pp.141-150
    • /
    • 1994
  • The purpose of this study is develope the algorithm of channel routing model which can be used for flood forecasting. In routing model, the hydrulic technique of the implicit scheme in the dynamic equation is chosen to route the unsteady varied flow. The channel routing model is connected with conceptual watershed model which is able to compute the flood hydrograph from each subbasin. The comparative study shows that the conceptual model can simulate the watershed runoff accurately. As a result of investigating the channel routing model, the optimal weighting factor $\theta$ which fixes two points between time line is selected. And also, the optimal error tolerance which satisfies computing time and converge of solution is chosen.

  • PDF

A Novel Routing Algorithm Based on Load Balancing for Multi-Channel Wireless Mesh Networks

  • Liu, Chun-Xiao;Chang, Gui-Ran;Jia, Jie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.4
    • /
    • pp.651-669
    • /
    • 2013
  • In this paper, we study a novel routing algorithm based on load balancing for multi-channel wireless mesh networks. In order to increase the network capacity and reduce the interference of transmission streams and the communication delay, on the basis of weighted cumulative expected transmission time (WCETT) routing metric this paper proposes an improved routing metric based on load balancing and channel interference (LBI_WCETT), which considers the channel interference, channel diversity, link load and the latency brought by channel switching. Meanwhile, in order to utilize the multi-channel strategy efficiently in wireless mesh networks, a new channel allocation algorithm is proposed. This channel allocation algorithm utilizes the conflict graph model and considers the initial link load estimation and the potential interference of the link to assign a channel for each link in the wireless mesh network. It also utilizes the channel utilization percentage of the virtual link in its interference range as the channel selection standard. Simulation results show that the LBI_WCETT routing metric can help increase the network capacity effectively, reduce the average end to end delay, and improve the network performance.

A Channel Flood Routing by the Analytical Diffusion Model

  • Yoon, Yong-Nam;Yoo, Chul-Sang
    • Korean Journal of Hydrosciences
    • /
    • v.1
    • /
    • pp.1-14
    • /
    • 1990
  • The analytical diffusion model is first formulated and its characteristics are critically reviewed. The flood events during the 1985-1986 flood seasons in the IHP Pyungchang Representative Basin are routed by this model and are compared with those routed by the kinematic wave model. The present model is proven to be an excellent means of taking the backwater effects due to lateral inflow or downstream river stage variations into consideration in channel routing of flood flows. It also requires much less effort and computing time at a desired station compared to any other reliable flood routing methods.

  • PDF

A Channel Flood Routing by Muskingum Method Incorporating Lateral Inflows (측방 유입수를 고려한 자연 하도의 Muskingum 홍수추적)

  • 강인주;윤용남
    • Water for future
    • /
    • v.23 no.3
    • /
    • pp.385-395
    • /
    • 1990
  • Three-parameter Muskingum flood routing model which incorporated the inflows alongside the river channel is applied for the Waegwan-Jeukpogyo reach of the Nakdong River using the flood data of 12 selected flood events experienced in this reach. The flood routing equations for three-parameter model were expressed as a system of finite difference equations and the routing constants were directly computed by matrix inversion method. Then, the three parameters, which consist of the storage constants(K), weighting fator(x), and lateral inflow parameter(α), were determined from the computed routing constants. The results of the present study showed that the model can predict with a fair accuracy the flood discharges at the downsteam end of the reach. The parameters K and x were seen as channel parameters which have close relations with the flood magnitude, whereas the lateral inflow parameter was shown to be strongly governed by the rainfall characteristics of the tributary watersheds contributing to the lateral inflows.

  • PDF

Joint Channel Assignment and Multi-path Routing in Multi-radio Multi-channel Wireless Mesh Network

  • Pham, Ngoc Thai;Choi, Myeong-Gil;Hwang, Won-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.6
    • /
    • pp.824-832
    • /
    • 2009
  • Multi-radio multi-channel Wireless Mesh Network requires an effective management policy to control the assignment of channels to each radio. We concentrated our investigation on modeling method and solution to find a dynamic channel assignment scheme that is adapted to change of network traffic. Multi-path routing scheme was chosen to overwhelm the unreliability of wireless link. For a particular traffic state, our optimization model found a specific traffic distribution over multi-path and a channel assignment scheme that maximizes the overall network throughput. We developed a simple heuristic method for channel assignment by gradually removing clique load to obtain higher throughput. We also presented numerical examples and discussion of our models in comparison with existing research.

  • PDF

Flow Routing in Prismatic Symmetrical Compound Channels by Applications of the Apparent Shear Force (ASF)

  • Chun, Moo-Kap;Jee, Hong-Kee
    • Korean Journal of Hydrosciences
    • /
    • v.8
    • /
    • pp.41-56
    • /
    • 1997
  • A new routing computer model for the symmetric compound channel called the ASRMCS(Apparent Shear Force Muskingum-Cunge Method in Symmetry) has been developed. The Muskingum-Cunge routing method is adapted. The Apparent Shear Force (ASF) between the deep main channel and the shallow floodplan flow is introduced while the flow is routed. The nonlinear parameter method is applied. The temporal and spatial increments are varied according to the flow rate. The adaptation of above schemes is tested against the routed hydrographs using the DAMBRK model. The results of general routing practice of Muskingum-Cunge Method(GPMC) are also compared with those of above two models. The results of the new model match remarkably well with those of DAMBRK. The routed hydrographs show a smooth variation from the inflow boundary condition without any distortions caused by the difference of cross-section shape. However, the results of GPMC, showing early rise and fall of routed hydrograph, have considerable differences from those of the ASFMCS and DAMBRK.

  • PDF

Application of Channel Routing Model by Taylor-Galerkin Finite Element Method -Modeling of Flow in Flood- (테일러-갤러킨 유한요소법에 의한 하도추적 모형의 적용 -홍수시 하천 유량 모의-)

  • Lee, Hae-Gyun
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.1
    • /
    • pp.404-410
    • /
    • 2011
  • For the simulation of one-dimensional unsteady flow, the Taylor-Galerkin finite element method was adopted to the discretization of the Saint Venant equation. The model was applied to the backwater problem in a single channel and the flood routing in dendritic channel networks. The numerical solutions were compared with previously published results of finite difference and finite element methods and good agreement was observed. The model solves the continuity and the momentum equations in a sequential manner and this leads to easy implementation. Since the final system of matrix is tri-diagonal with a few additional entry due to channel junctions, the tri-diagonal matrix solution algorithm can be used with minor modification. So it is fast and economical in terms of memory for storing matrices.