• Title/Summary/Keyword: channel prediction

Search Result 477, Processing Time 0.036 seconds

LP-Based Blind Adaptive Channel Identification and Equalization with Phase Offset Compensation

  • Ahn, Kyung-Sseung;Baik, Heung-Ki
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.4C
    • /
    • pp.384-391
    • /
    • 2003
  • Blind channel identification and equalization attempt to identify the communication channel and to remove the inter-symbol interference caused by a communication channel without using any known trainning sequences. In this paper, we propose a blind adaptive channel identification and equalization algorithm with phase offset compensation for single-input multiple-output (SIMO) channel. It is based on the one-step forward multichannel linear prediction error method and can be implemented by an RLS algorithm. Phase offset problem, we use a blind adaptive algorithm called the constant modulus derotator (CMD) algorithm based on condtant modulus algorithm (CMA). Moreover, unlike many known subspace (SS) methods or cross relation (CR) methods, our proposed algorithms do not require channel order estimation. Therefore, our algorithms are robust to channel order mismatch.

Multispectral Image Compression Using Classification in Wavelet Domain and Classified Inter-channel Prediction and Selective Vector Quantization in Wavelet Domain (웨이브릿 영역에서의 영역분류와 대역간 예측 및 선택적 벡터 양자화를 이용한 다분광 화상데이타의 압축)

  • 석정엽;반성원;김병주;박경남;김영춘;이건일
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.31-34
    • /
    • 2000
  • In this paper, we proposed multispectral image compression method using CIP (classified inter-channel prediction) and SVQ (selective vector quantization) in wavelet domain. First, multispectral image is wavelet transformed and classified into one of three classes considering reflection characteristics of the subband with the lowest resolution. Then, for a reference channel which has the highest correlation with other channels, the variable VQ is performed in the classified intra-channel to remove spatial redundancy. For other channels, the CIP is performed to remove spectral redundancy. Finally, the prediction error is reduced by performing SVQ. Experiments are carried out on a multispectral image. The results show that the proposed method reduce the bit rate at higher reconstructed image quality and improve the compression efficiency compared to conventional method.

  • PDF

Blind Adaptive Channel Estimation using Multichannel Linear Prediction (다채널 선형예측을 이용한 블라인드 적응 채널 추정)

  • 조주필;안경승;황지원
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.1
    • /
    • pp.114-120
    • /
    • 2003
  • Blind channel estimation of communication channels is a problem of important current theoretical concerns. Recently proposed solutions for this problem exploit the diversity induced by antenna array or time oversampling, leading to the so-called, second order statistics techniques. This paper proposes the blind adaptive channel estimation using multichannel linear prediction method. Computer simulations are presented to compare the proposed algorithm with the existing ones.

  • PDF

Prediction of Stratified Turbulent Channel Flows with an Second Moment Model Using the Elliptic Equations (타원 방정식을 사용하는 2차모멘트 모형에 의한 성층된 난류 평판유동의 예측)

  • Shin, Jong-Keun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.12
    • /
    • pp.831-841
    • /
    • 2007
  • This work is to extend the elliptic operator, which has been already adopted in turbulent stress model, to fully developed turbulent buoyant channel flows with changing the orientation of the buoyancy vector to be perpendicular to the channel walls. The turbulent heat flux models based on the elliptic concept are employed and closely linked to the elliptic blending second moment closure which is used for the prediction of Reynolds stresses. In order to reflect the stable or unstable stratification conditions, the present model introduces the gradient Richardson number into the thermal to mechanical time scale ratio and model coefficients. The present model has been applied for the computation of stably and unstably stratified turbulent channel flows and the prediction results are directly compared to the DNS data.

An Efficient Adaptive Modulation and Coding Scheme on Downlink Rayleigh Fading Channels Considering Channel-State-Information Feedback Delay (하향 링크 레일리 감쇄 채널에서의 채널 상태 정보 궤환 지연을 고려한 효율적인 적응 전송 기법)

  • Rhee, Du-Ho;Hwang, Hae-Gwang;Sang, Young-Jin;Kim, Kwang-Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.11C
    • /
    • pp.1100-1106
    • /
    • 2006
  • In downlink of mobile communication systems, the feedback delay between channel estimation and actual transmission causes inaccuracy in channel-state-information (CSI) and this results in performance degradation. In order to overcome this phenomenon, channel prediction is inevitable. In this paper, an adaptive transmission scheme based on channel prediction is proposed and its performance is evaluated. From simulation results, it is shown that the performance degradation due to the feedback delay is successfully mitigated by using the proposed scheme.

A Robust Adaptive MIMO-OFDM System Over Multipath Transmission Channels (다중경로 전송 채널 특성에 강건한 적응 MIMO-OFDM 시스템)

  • Kim, Hyun-Dong;Choe, Sang-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.7A
    • /
    • pp.762-769
    • /
    • 2007
  • Adaptive MIMO-OFDM (Orthogonal Frequency Division Multiplexing) system adaptively changes modulation scheme depending on feedback channel state information (CSI). The CSI feedback channel which is the reverse link channel has multiple symbol delays including propagation delay, processing delay, frame delay, etc. The unreliable CSI due to feedback delay degrades adaptive modulation system performance. This paper compares the MSE and data capacity with respect to delay and channel signal to noise ratio for the two multi-step channel prediction schemes, CTSBP and BTSBP, such that robust adaptive SISO-OFDM/MIMO-OFDM is designed over severe mobile multipath channel conditions. This paper presents an interpolation method to reduce feedback overhead for adaptive MIMO-OFDM and shows MSE with respect to interpolation interval.

Channel Prediction based MAC Protocol in Cognitive Radio Networks. (인지무선 네트워크에서의 채널예측기반 MAC 프로토콜)

  • Zhu, Wen-Min;Park, Hyung-Kun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1914-1916
    • /
    • 2010
  • Cognitive radio MAC protocol should allow secondary users to access unused or under-utilized spectrum without interference to primary users. For cognitive MAC protocol, one of the important issues is how to select the channel opportunities for secondary users. In this paper, we propose a novel cognitive MAC protocol to allocate channel opportunities for the secondary users based on the prediction of future availability. The proposed MAC protocol can reduce the interference to primary users and increase throughput using multiple channels.

Multichannel Blind Equalization using Multistep Prediction and Adaptive Implementation

  • Ahn, Kyung-Seung;Hwang, Ho-Sun;Hwang, Tae-Jin;Baik, Heung-Ki
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.69-72
    • /
    • 2001
  • Blind equalization of transmission channel is important in communication areas and signal processing applications because it does not need training sequence, nor does it require a priori channel information. Recently, Tong et al. proposed solutions for this problem exploit the diversity induced by antenna array or time oversampling, leading to the second order statistics techniques, fur example, subspace method, prediction error method, and so on. The linear prediction error method is perhaps the most attractive in practice due to the insensitive to blind equalizer length mismatch as well as for its simple adaptive filter implementation. Unfortunately, the previous one-step prediction error method is known to be limited in arbitrary delay. In this paper, we induce the optimal delay, and propose the adaptive blind equalizer with multi-step linear prediction using RLS-type algorithm. Simulation results are presented to demonstrate the proposed algorithm and to compare it with existing algorithms.

  • PDF

A New Channel Reservation Scheme for Soft Handoff Algorithms in Wireless Networks (무선망에서 소프트 핸드오프 알고리즘을 위한 새로운 대역폭 예약 기법)

  • Kwon Se-Dong;Park Hyun-Min
    • The KIPS Transactions:PartC
    • /
    • v.12C no.5 s.101
    • /
    • pp.701-708
    • /
    • 2005
  • The mobility prediction algorithm and the channel reservation scheme have been reported as an effective means to provide QoS guarantees and the efficient resource reservation in wireless networks. Among these prediction algorithms, the recently proposed Detailed-ZMHB algorithm makes use of the history of the user's positions within the current cell to predict the next cell, which provides the better prediction accuracy than the others. The handoff prioritizing schemes are proposed to provide improved performance at the expense of an increase in the blocking probability of new calls. In the soft handoff of the CDMA systems, a mobile can communicate via two adjacent cells simultaneously for a while before the actual handoff takes place. In this paper, we propose a new channel reservation scheme making use of the user mobility pattern information in order to reduce the call dropping probability. Our results show that the proposed scheme gives about 67.5-71.1$\%$ lower call dropping probability, compared to the existing scheme.

Channel Reservation Scheme Using Wiener Prediction Theory for Cognitive Radio Networks (무선 인지 네트워크에서 위너예측 이론에 의한 예약채널 할당기법)

  • Lee, Jin-Yi
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.5
    • /
    • pp.757-763
    • /
    • 2011
  • This paper presents a channel reservation scheme using Wiener prediction model in order to reduce the rate of forced termination of cognitive users in cognitive radio networks. The proposed method uses Wiener prediction model to predict the number of radio channel required by the reappearance of primary users, and then calculates and reserves the number of channels that cognitive users demand for their spectrum handoff. Through the simulation we investigate cognitive users' forced termination rate and blocking rate with and without channel reservation. In addition we show the bandwidth utilization efficiency for both cases. The results show that the proposed scheme can reduce the forced termination rate of cognitive users at the cost of slightly increasing in blocking rate. Also it is seen that there is little difference in bandwidth utilization efficiency for both cases.