• Title/Summary/Keyword: channel flow

검색결과 2,837건 처리시간 0.028초

박막이 부착된 채널내의 2차원 층류유동장에 대한 연구 (Study on Two-Dimensional Laminar Flow through a Finned Channel)

  • 윤석현;정재택
    • 한국전산유체공학회지
    • /
    • 제7권3호
    • /
    • pp.53-59
    • /
    • 2002
  • A two-dimensional laminar flow through a channel with a pair of symmetric vertical fins is investigated. At far up- and down-stream from the fins, the plane Poiseuille flow exists in the channel. The Stokes flow for this channel is first investigated analytically and then the other laminar flows by numerical method. For analytic method, the method of eigen function expansion and collocation method are employed. In numerical solution for laminar flows, finite difference method(FDM) is used to obtain vorticity and stream function. From the results, the streamline patterns are shown and the additional pressure drop due to the attached fins and the force exerted on the fin are calculated. It is clear that the force depends on the length of fins and Reynolds number. When the Reynolds number exceeds a critical value, the flow becomes asymmetric. This critical Reynolds number Re/sub c/ depends on the length of the fins.

받음각이 큰 평판 채널 내의 역류 유동 해석 (Flow Analysis of Reverse Flow in a Channel with High Angle of Attack)

  • 최승;손창현
    • 한국가시화정보학회지
    • /
    • 제5권1호
    • /
    • pp.37-42
    • /
    • 2007
  • Reverse flow occurs in a channel when there is an obstruction at the entry. However it has been shown recently that reverse flow can be realized without an obstruction, by staggering the sides of the channel and placing it at an angle of attack to the oncoming flow. In this study the latter flow is computationally investigated. Studies have been carried out for different widths (gap between the two walls forming the channel), and at an angle of attack of 30. The results have captured all the essential features of this complex phenomenon and show the time dependent pumping mechanism which leads to the occurrence of reverse flow.

복단면인 직선수로 내 사행 저수로의 형태에 따른 흐름특성 연구 (A Study on Flow Characteristics according to Meandering Low Flow Channel Shape in the Compound Cross Section Typed Straight Channel)

  • 김성환;최계운
    • 한국습지학회지
    • /
    • 제19권4호
    • /
    • pp.484-490
    • /
    • 2017
  • 복단면 형태를 이루는 직선하도 내 사행하는 저수로의 형태에 따른 흐름 특성을 파악하기 위해, 국내 대표적인 하도 형태를 상정해 실내 수리모형을 실시해서 3차원 수치모의의 유효성을 확인하고, 이를 바탕으로 다른 유형의 하도 형태에 대해서도 수치모의로 검토를 실시하였다. 본 연구결과, 수리모형 실험에서 관측한 수심별 유속값을 이용하여 수치모형의 검정을 수행한 결과, 수치모의 결과와 충분히 일치하는 것으로 확인하였다. 이를 토대로, 추가적인 저수로 형태 변화에 따른 유동장에 대해 분석한 바에 따르면, 선행 연구들에서 검토된 이차류 현상이 발생하였음을 확인한 한편, 고수부지 내 유수단면적 확대에 따라 최고유속분포 지점이 이동하는 현상을 확인할 수 있었다. 궁극적으로 저수로 폭 변화가 흐름에 영향을 끼쳐 궁극적으로 하천설계에 중요한 요소인 수충부의 위치와 그 영향 정도를 파악하는 것이 필요하다고 판단된다.

고온형 고분자전해질형 연료전지에서의 사형 유로와 평행 유로 성능비교에 대한 수치해석적 연구 (Numerical Study on Comparison of Serpentine and Parallel Flow Channel in High-temperature Proton Exchange Membrane Fuel Cells)

  • 안성하;오경민;주현철
    • 한국수소및신에너지학회논문집
    • /
    • 제29권1호
    • /
    • pp.41-55
    • /
    • 2018
  • General polymer electrolyte fuel cell (PEMFC) operates at less than $80^{\circ}C$. Therefore liquid phase water resulting from electrochemical reaction accumulates and floods the cell which in turn increases the mass transfer loss. To prevent the flooding, it is common to employ serpentine flow channel, which can efficiently export liquid phase water to the outlet. The major drawback of utilizing serpentine flow channel is the large pressure drop that happens between the inlet and outlet. On the other hand, in the high temperature polymer electrolyte fuel cell (HT-PEMFC), since the operating temperature is 130 to $180^{\circ}C$, the generated water is in the state of gas, so the flooding phenomenon is not taken into consideration. In HT-PEMFCs parallel flow channel with lower pressure drop between the inlet and outlet is employed therefore, in order to circulate hydrogen and air in the cell less pumping power is required. In this study we analyzed HT-PEMFC's different flow channels by parallel computation using previously developed 3-D isothermal model. All the flow channels had an active area of $25cm^2$. Also, we numerically compared the performance of HT-PEMFC parallel flow channel with different manifold area and Rib interval against the original serpentine flow channel. Results of the analysis are shown in the form of three-dimensional contour polarization curves, flow characteristics in the channel, current density distribution in the Membrane, overpotential distribution in the catalyst layer, and hydrogen and oxygen concentration distribution. As a result, the performance of a real area fuel cell was predicted.

사이드 채널형 링블로워의 임펠러 내부 유로에 따른 성능변화 분석 (Analysis of Performance Characteristics by Inner Flow Path of Side Channel Type Ring Blower)

  • 이경용;최영석;정경호;박운진
    • 한국유체기계학회 논문집
    • /
    • 제15권4호
    • /
    • pp.67-71
    • /
    • 2012
  • This study analyzed performance changes by an inner flow path of impeller groove for side channel type ring blower using CFD. Two models have the same side channel and clearance while one has an inner flow path and the other doesn't. To analyze the performance change of a ring blower, overall performance and local flow field were analyzed. For the overall performance, pressure increase and impeller torque were checked under the design flow condition. Under the design flow condition, pressure increase was greater for the model with the inner flow path. The model with the inner flow path showed improved efficiency because the area subject to torque decreased due to the creation of inner flow path. To analyze local flow field, a section was created from the representative location of each impeller groove toward the direction of radius. Inner channel pressure distribution depending on the rotation direction shows that the model with the inner flow path has pressure equilibrium of working fluid through the inner flow path. Velocity distribution of inside impeller groove shows that flow field was coupled and appeared to form an inner wall where the flow field was stabilized.

TELEMAC-2D모형을 이용한 개수로 분류흐름에 대한 수치모의 연구 (Numerical study of dividing open-channel flows at bifurcation channel using TELEMAC-2D)

  • 정대진;장창래;정관수
    • 한국수자원학회논문집
    • /
    • 제49권7호
    • /
    • pp.635-644
    • /
    • 2016
  • 본 연구에서는 2차원 수치모형을 이용하여 개수로 분류부에서 분류수로 폭과 유량비 변화에 따른 흐름특성을 파악하였다. 2차류 영향을 고려한 분류부 수치모의시 흐름분포를 실험결과에 더 정확하고 안정하게 모의가능하다. 분류수로내 통수능을 감소시키는 흐름분리구역과 2차류의 상호 작용에 의한 흐름정체 효과는 분류유량비를 감소시킨다. 분류부 상류 유입유량과 유속이 감소할수록 수로폭 변화에 따른 분류유량비 변화가 더 크다. 동일 하류단 경계조건에서 분류수로 폭을 감소시킬 때, 본류 하류부 프루우드 수-분류유량비 관계식의 변화율은 -2.4843~-2.6675로 유사하게 나타난다. 동일 분류유량비 조건에서 분류수로 폭이 감소할수록 수축계수는 증가하고, 흐름분리구역의 폭은 감소한다. 분류수로 폭을 증가시킬 경우 분류부 상류 유입유량이 적을수록, 그리고 분류부 상류 유입량을 증가시킬 경우 분류수로 폭이 좁을수록 흐름분리구역 폭 감소율이 더 크다. 동일 상류 유입유량 조건에서 분류수로 폭이 감소할수록 분류유량비, 흐름분리구역의 길이와 폭은 감소한다.

평행류와 Interdigitated 유로를 가진 교분자 전해질 연료전지(PEMFC)의 성능특성에 대한 수치해석 (Numerical Analysis on Performance Characteristics of PEMFC with Parallel and Interdigitated Flow Channel)

  • 이필형;조선아;최성훈;황상순
    • 전기화학회지
    • /
    • 제9권4호
    • /
    • pp.170-177
    • /
    • 2006
  • 고분자 전해질 연료전지의 분리판의 유동채널 설계는 고전류밀도에서 발생하는 농도분극에 직접적인 영향을 줄 뿐 아니라 생성되는 물의 효과적인 전달을 위하여 매우 중요하다. 평행류 유로와 interdigitated 유로의 성능비교를 위하여 연료극과 공기극이 포함된 완전한 형태의 고분자 전해질 연료전지의 3차원 수치해석모델을 개발하였다. 수치해석모델을 사용하여 평행류 유동장과 interdigitated 유동장의 압력강하, 채널간의 물질전달, $H_2O$$O_2$의 농도 분포 그리고 i-V 성능을 비교하였다. 그 결과 물질전달에서 채널간의 대류에 의한 물질전할이 더욱 우수한 interdigitated 유동채널에서 성능이 더 높게 나타났으며 압력강하는 보다 크게 나타나 설계시 두가지 성능에 대한 상호보완이 필요함을 알 수 있었다.

Traffic Flow Estimation based Channel Assignment for Wireless Mesh Networks

  • Pak, Woo-Guil;Bahk, Sae-Woong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제5권1호
    • /
    • pp.68-82
    • /
    • 2011
  • Wireless mesh networks (WMNs) provide high-speed backbone networks without any wired cable. Many researchers have tried to increase network throughput by using multi-channel and multi-radio interfaces. A multi-radio multi-channel WMN requires channel assignment algorithm to decide the number of channels needed for each link. Since the channel assignment affects routing and interference directly, it is a critical component for enhancing network performance. However, the optimal channel assignment is known as a NP complete problem. For high performance, most of previous works assign channels in a centralized manner but they are limited in being applied for dynamic network environments. In this paper, we propose a simple flow estimation algorithm and a hybrid channel assignment algorithm. Our flow estimation algorithm obtains aggregated flow rate information between routers by packet sampling, thereby achieving high scalability. Our hybrid channel assignment algorithm initially assigns channels in a centralized manner first, and runs in a distributed manner to adjust channel assignment when notable traffic changes are detected. This approach provides high scalability and high performance compared with existing algorithms, and they are confirmed through extensive performance evaluations.

간접냉각방식을 이용한 열원이 부착된 채널내의 열전달 촉진에 관한 연구 (The study on heat transfer enhancement using indirect cooling system in the channel with heat source)

  • 김광추;박만흥;윤준규
    • 설비공학논문집
    • /
    • 제11권3호
    • /
    • pp.321-331
    • /
    • 1999
  • A numerical study is carried out for increasing heat removal using indirect cooling system. Computation is performed for nine cases as variation of flow condition in the lower channel. As the result of this study, water is more effective than air at the same pressure loss in spite of the lower inlet velocity. In channel configuration, the vertical channel is more effective than horizontal channel because of the buoyancy effect. Under the condition that heat generation is the same, counter flow effectively decreases the temperature difference among blocks. Parallel flow is more effective than counter flow when average temperature of all blocks is considered. In the case of installing obstacles in the lower channel, it is desirable to install obstacles in the bottom of lower channel. Heat transfer rate increases as the height of obstacles increases.

  • PDF

A Study of the Flow Phenomenon of Water in a Channel with Flat Plate Obstruction Geometry at the Entry

  • Khan, M.M.K.;Kabir, M.A.;Bhuiyan, M.A.
    • Journal of Mechanical Science and Technology
    • /
    • 제17권6호
    • /
    • pp.879-887
    • /
    • 2003
  • The flow in a parallel walled test channel, when obstructed with a geometry at the entrance, can be forward, reverse and stagnant depending on the position of the obstruction. This interesting flow phenomenon has potential benefit in the control of energy and various flows in the process industry In this experiment, the flat plate obstruction geometry was used as an obstruction at the entry of the test channel. The parameters that influence the flow inside and around the test channel were the gap (g) between the test channel and the obstruction geometry, the length (L) of the test channel and the Reynolds number (Re). The effect of the gap to channel width ratio (g/w) on the magnitude of the velocity ratio (V$\_$i/ / V$\_$o/ : velocity inside/ velocity outside the test channel) was investigated for a range of Reynolds numbers. The maximum reverse flow observed was nearly 20% to 60% of the outside velocity for Reynolds number ranging from 1000 to 9000 at g/w ratio of 1.5. The maximum forward velocity inside the test channel was found 80% of the outside velocity at higher g/w ratio of 8. The effect of the test channel length on the velocity ratio was investigated for different g/w ratios and a fixed Reynolds number of 4000. The influence of the Reynolds number on the velocity ratio is also discussed and presented for different gap to width ratio (g/w). The flow visualisation photographs showing fluid motion inside and around the test channel are also presented and discussed.