• Title/Summary/Keyword: channel estimation error

Search Result 429, Processing Time 0.033 seconds

Power Control for D2D Communication in the Cellular System: The Impact of Channel Estimation Error

  • Oh, Changyoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.8
    • /
    • pp.51-57
    • /
    • 2018
  • In this paper, we investigate the impact of channel estimation error on the D2D power control algorithm. In the previous work, D2D power control algorithm has been proposed under the assumption that the channel between the transmitter and the corresponding receiver is perfectly estimated. In reality, the channel estimation error is more often the case. The first question is that the power control algorithm designed for perfect channel estimation is still valid under the channel estimation error environment ? The second question is, if it is not valid, what could be the possible remedy for the channel estimation error ? In this paper, to answer the first question, we investigate the impact of the channel estimation error on the power control algorithm. We first review the D2D power control algorithm designed for perfect channel estimation. Then, we model the channel estimation error. Finally, we summarize the main results observed from the analysis of the simulation.

Least Square Channel Estimation Scheme of OFDM System using Fuzzy Inference Method (퍼지 추론법을 적용한 OFDM 시스템의 LS(Least Square) 채널추정 기법)

  • Kim, Nam;Choi, Jung-Hun
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.5
    • /
    • pp.84-90
    • /
    • 2009
  • In this paper, the new channel estimation was proposed that have the low complexity and high performance using Fuzzy inference method uses recently from various field for estimation about uncertainty in channel estimation of OFDM. Proposed method is channel estimation performance improve, calculation and interpolation for statistics character of channel using the pilot before LS channel estimation by Fuzzy inference method. Simulation result in QPSK proposed channel estimation method shows the enhancement of 5.5dB compared to the LS channel estimation and the deterioration of 1.3dB compared to the MMSE channel estimation in mean square error point $10^{-3}$. symbol error rate shows similarity performance the MMSE $10^{-1.96}$, proposed channel estimation $10^{-1.93}$ and enhancement of $10^{-0.35}$ compared to the LS channel estimation in signal to noise ratio point 20dB.

Performance of SC-FDE System in UWB Communications with Imperfect Channel Estimation

  • Wang, Yue;Dong, Xiaodai
    • Journal of Communications and Networks
    • /
    • v.9 no.4
    • /
    • pp.466-472
    • /
    • 2007
  • Single carrier block transmission with frequency domain equalization(SC-FDE) has been shown to be a promising candidate in ultra-wideband(UWB) communications. In this paper, we analyze the performance of SC-FDE over UWB communications with channel estimation error. The probability density functions of the frequency domain minimum mean-squared error(MMSE) equalizer taps are derived in closed form. The error probabilities of single carrier block transmission with frequency domain MMSE equalization under imperfect channel estimation are presented and evaluated numerically. Compared with the simulation results, our semi-analytical analysis yields fairly accurate bit error rate performance, thus validating the use of the Gaussian approximation method in the performance analysis of the SC-FDE system with channel estimation error.

A Novel Channel Estimation using 2-Dimensional Linear Iinterpolation for OFDM MIMO systems (2차원 선형보간법을 이용한 OFDM MIMO 시스템에서의 채널 추정)

  • Oh, Tae Youl;Ahn, Sung Soo;Choi, Seung Won
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.7 no.3
    • /
    • pp.107-113
    • /
    • 2011
  • An OFDMA(Orthogonal Frequency Division Multiple Access) includes a MIMO(Multi-Input Multi-Output) scheme for improving spectral efficiency and data throughput. Recognizing that the performance of MIMO system is heavily dependent upon the accuracy of channel estimation, we propose a novel channel estimation for the MIMO scheme based on OFDMA. Conventional interpolation-based channel estimation suffers from poor estimation error at specific subcarriers. Proposed scheme makes use of a planar interpolation instead of linear interpolation for those subcarriers of bad accuracy. Simulation results show that the proposed scheme improves the performance of MIMO system by improving the accuracy in channel estimation especially for the adverse subcarrier positions. It is observed that the proposed scheme outperforms the conventional method by about 2dB in terms of both mean squared error and overall bit error rate with a reasonable computational complexity.

Performance Analysis of WF-MIMO Systems with Channel Estimation Error (채널 추정 오차를 고려한 WF-MIMO 시스템의 성능 분석)

  • Ham, Jae-Sang;Yoo, Byoung-Wook;Kang, Ji-Won;Lee, Chung-Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.8
    • /
    • pp.91-97
    • /
    • 2008
  • The conventional WF(water-filling)-MIMO systems assumes that the channel state information is perfectly known at receiver. However, since, generally, the perfect channel state information is not available at receiver, channel estimation error should be considered at the system. Therefore, in this paper 4he performance of the conventional WF-MIMO systems is numerically analyzed when channel estimation error is considered. The analysis results show that mean square error of channel estimation up to $10^{-4}$ is tolerable to get the same performance obtained when perfect channel information is available.

Cognitive Relay Networks with Underlay Spectrum Sharing and Channel Estimation Error: Interference Probability and BER Analysis

  • Ho-Van, Khuong
    • Journal of Communications and Networks
    • /
    • v.16 no.3
    • /
    • pp.301-304
    • /
    • 2014
  • This paper proposes accurate interference probability and bit error rate formulas for cognitive relay networks with underlay spectrum sharing and channel estimation error (CEE). Numerous results reveal that the CEE not only degrades the performance of secondary systems (SSs) but also increases interference power caused by SSs to primary systems (PSs), eventually unfavorable to both systems. A solution to further protect PSs from this effect through reducing the power of secondary transmitters is investigated and analyzed.

Impact of Channel Variations and Channel Estimation Errors on the Error Performance of Convolutional Coded STBC Systems (길쌈 부호화 시공간 블록 부호 시스템의 오류 성능에 대한 채널 변화 및 채널 추정 오류의 영향)

  • Yun, Eunsik;Kim, Sun-Hyung;Park, Sangjoon;Kang, Byeong-Gwon
    • Journal of Digital Convergence
    • /
    • v.16 no.5
    • /
    • pp.231-237
    • /
    • 2018
  • This paper investigates the impact of the channel variations and channel estimation errors on the error performance of convolutional coded STBC systems. We consider the orthogonal Almouti STBC and the quasi-orthogonal Jafarkhani STBC, and the error performance of the convolutional coded STBC system is investigated according to the channel variation and channel estimation error via numerical simulations. Simulation results show that, if the channel variation speed is slow, time diversity effects improve the error performance compared to the static-channel cases. However, if the channel variation speed is fast, unlike ZF or MMSE detection, the conventional STBC detection has the significant performance degradation especially with the quasi-orthogonal Jafarkhani STBC. Further, the error performance of the system is significantly degraded as the channel estimation errors become stronger, regardless of the detection scheme and channel variation speed.

Performance for MISO Pre-Rake TDD-CDMA system with Channel Estimation Error (채널추정 오류를 고려한 MISO Pre-Rake TDD-CDMA 시스템의 성능)

  • Jeong, Incheol
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.2
    • /
    • pp.104-111
    • /
    • 2017
  • Pre-Rake CDMA system using multiple transmit antenna provides a good system performance without equipping a complicated RAKE combiner at the mobile receiver. However, the performance of the Pre-Rake systems are significantly affected by channel estimation error so that the effect of the channel estimation error should be considered and analyzed for evaluating the system performance. In this paper, MISO(Multi-Input Multi-output) Pre-Rake CDMA system with channel estimation error is analyzed by numerical analysis and the results are compared with that of the computer simulation. From the numerical results, it is found that the performance of the Pre-Rake system is more affected by the phase error than the amplitude error.

A Joint Channel Estimation and Data Detection for a MIMO Wireless Communication System via Sphere Decoding

  • Patil, Gajanan R.;Kokate, Vishwanath K.
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.1029-1042
    • /
    • 2017
  • A joint channel estimation and data detection technique for a multiple input multiple output (MIMO) wireless communication system is proposed. It combines the least square (LS) training based channel estimation (TBCE) scheme with sphere decoding. In this new approach, channel estimation is enhanced with the help of blind symbols, which are selected based on their correctness. The correctness is determined via sphere decoding. The performance of the new scheme is studied through simulation in terms of the bit error rate (BER). The results show that the proposed channel estimation has comparable performance and better computational complexity over the existing semi-blind channel estimation (SBCE) method.

Effect of Channel Estimation Error on Capacity of MIMO Systems (MIMO 시스템의 채널 용량에 대한 채널 추정 오차의 영향 분석)

  • 함재상;심세준;이충용;박현철;홍대식
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.8
    • /
    • pp.63-68
    • /
    • 2004
  • The capacity of MIMO systems is numerically analyzed when channel estimation error exists. The analysis shows that the capacity is influenced by Mean Square Error (MSE) as well as average Signal to Noise Ratio (SNR). Furthermore, in this paper we present the standard selecting a channel estimator suitable to a system owing to get a tolerable channel estimation error in a given average SNR and channel capacity loss. The simulation results show that the tolerable MSEs for 1 bps/Hz capacity loss are about 10$^{-2}$ and 10$^{-4}$ at n dB and 40 dB average SNR, respectively.