• Title/Summary/Keyword: channel equalizer

Search Result 431, Processing Time 0.028 seconds

Performance Improvement of an OFDM/QPSK System in Selective Fading and Frequency Offset Channel (비선택성 페이딩과 주파수 오프셋이 함께 존재하는 채널에서 OFDM/QPSK 시스템의 성능 개선)

  • 유기희;곽재민;박기식;안준배;조성언;조성준
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.13-16
    • /
    • 2001
  • In this paper, We have investigated the SER performance of a OFDM/QPSK system with carrier-frequency offset in a frequency non-selective fading channel. Adaptive linear equalizer is adopted to OFDH/QPSK systems for compensation of performance degradation according to the non-selective fading and carrier frequency offset. As a result of performance analysis, the more frequency offset is, the worse performance of OFDH/QPSK system is. However, when OFDH/QPSK system adopts the adaptive linear equalizer, the SER performance is enhanced to the limit range

  • PDF

The Comparison of the Adaptive Equalization Performance in MCMA Algorithm by the Weighting Factor (MCMA알고리즘에서 weighting factor에 의한 적응 등화 성능 비교)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.4
    • /
    • pp.137-143
    • /
    • 2010
  • This paper deals with the performance comparison of self adaptive equalizer by the weighting factor of MCMA cost function for the compensate the amplitude and phase distortion which occurs in the communication channel. The MCMA is improves the cost function of present CMA at the output of equalizer for the minimize of error function in the amplitude and phase, the value of weighting factor is used at this time. When the comparison of equalizer performance, we classified to initial state and steady state, then it represents the convergence time and convergence speed and steady state operation of equalizer to the predetermined level, it is determined by the weighting factor. We confirm to the different result to this 2 state by weighting factor values using computer simulation. By using the result of this paper, if we appropriately choose the weighting factor values in the environment of communication channel, it is expected that the high quality digital transmission is possible.

Blind Equalizer and Carrier Recovery Circuit Using $\theta$-matching Algorithm in QAM Signal Demodulator (QAM 신호 복조시 자력 등화기와 $\theta$-정합을 이용한 위상 복구 회로)

  • 조웅기;장일순;정차근;조경록
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.6A
    • /
    • pp.920-930
    • /
    • 1999
  • Many researches on the multi-level QAM(Quadrature Amplitude Modulation) which is known to be a promising digital data transmission method for efficient use of channel bandwidth have been carried on, and their applications to various real fields are now being in progress. However, in the band-limited communication systems, each transmitted symbols is distorted by the ISI(Intersymbol Interference) and the phase error. Therefore, an equalizer and a carrier recovery must be taken into considerations to attenuate the effects of these distortions in the receiver. This paper presents an effective receiver structures that is applicable to the multi-level QAM. The proposed receiver system is consisted of an equalizer with Godard’s blind algorithm and a carrier recovery circuit. The phase error is estimated with a $\theta$-matching algorithm and is used in the carrier recovery to recover the correct phase. The simulation results are included to evaluate performance of the proposed receiver system for the various channel models.

  • PDF

A 12.5-Gb/s Low Power Receiver with Equalizer Adaptation (이퀄라이저 적응기를 포함한 12.5-Gb/s 저전력 수신단 설계)

  • Kang, Jung-Myung;Jung, Woo-Chul;Kwon, Kee-Won;Chun, Jung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.12
    • /
    • pp.71-79
    • /
    • 2013
  • This paper describes a 12.5 Gb/s low-power receiver design with equalizer adaptation. The receiver adapts to channel and chip process variation by adaptation circuit using sampler and serializer. The adaptation principle is explained. It describes technique receiving ground referenced differential signal of voltage-mode transmitter for low-power. The CTLE(Continuous Time Linear Equalizer) having 17.6 dB peaking gain to remove long tail ISI caused channel with -21 dB attenuation. The voltage margin is 210 mV and the timing margin is 0.75 UI in eye diagram. The receiver consumes 0.87 mW/Gb/s low power in 45 nm CMOS technology.

Adaptive Equalization Algorithm of Improved-CMA for Phase Compensation (위상 보상을 위한 개선된 CMA 적응 등화 알고리즘)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.3
    • /
    • pp.63-68
    • /
    • 2014
  • This paper related with the I-CMA (Improved-CMA) algorithm that is possible to compensates of phase in CMA adatpve equalizer which is used for the elemination of intersymbol interference in the multipath fading and band limit characteristics of channel. The new cost function is proposed for the eliminate the amplitude and phase simulataneous by modifying the cost fuction for get the error signal in present CMA algorithm. It has a merit to the algorithm simplicities and eliminats the PLL device for phase compensation after equalization. For proving this, the recovered signal constellation that is the output of equalizer output signal and the residual isi and Maximum Distortion charateristic learning curve that are presents the convergence performance in the equalizer and the overall frequency transfer function of channel and equalizer were used. As a result of computer simulation, the I-CMA has more good compensation capability of amplitude and phas in the recovered constellation. But the convergence time is slow due to the simultaneously phase compensation.

Performance Analysis of Underwater Acoustic Communication Systems with Turbo Equalization in Korean Littoral Sea (한국 연근해 환경에서 터보 등화기를 이용한 수중음향통신 시스템 성능 분석)

  • Park, Tae-Doo;Han, Jeong-Woo;Jung, Ji-Won;Kim, Ki-Man;Lee, Sang-Kook;Chun, Seung-Yong;Son, Kweon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.124-130
    • /
    • 2013
  • The performance of underwater acoustic communication system is sensitive to the ISI(Inter-Symbol Interference) due to delay spread develop of multipath signal propagation. The equalizer is used to combat the ISI. In this paper, the performances of underwater acoustic communication with turbo equalizer were evaluated by real data collected in Korean littoral sea. As a result, when one iterative decoding using turbo equalizer is applied, the performance was improved 1.5 dB than the case of the non-iterative equalizer at BER $10^{-4}$. In the case of two or three iterations the performance was enhanced about 3.5 dB, but the performance wasn't improved any more in the case of more than three times.

An Adaptive Decision-Directed Equalizer using Iterative Hyperplane Projection for SIMO systems (IHP 알고리즘을 이용한 SIMO 시스템용 적응 직접 결정 등화기 연구)

  • Lee Won-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.1C
    • /
    • pp.82-91
    • /
    • 2005
  • This paper introduces an efficient affine projection algorithm(APA) using iterative hyperplane projection. Among various fast converging adaptation algorithms, APA has been preferred to be employed for various applications due to its inherent effectiveness against the rank deficient problem. However, the amount of complexity of the conventional APA could not be negligible because of the accomplishment of sample matrix inversion(SMI). Moreover, the 'shifting invariance property' usually exploited in single channel case does not hold for the application of space-time decision-directed equalizer(STDE) deployed in single-input-multi-output(SIMO) systems. Thus, it is impossible to utilize the fast adaptation schemes such as fast transversal filter(FlF) having low-complexity. To accomplish such tasks, this paper introduces the low-complexity APA by employing hyperplane projection algorithm, which shows the excellent tracking capability as well as the fast convergence. In order to confirm th validity of the proposed method, its performance is evaluated under wireless SIMO channel in respect to bit error rate(BER) behavior and computational complexity.

A Study on The Adaptive Equalizer Using High Order Statistics in Multipath Fading Channel (다중 경로 페이딩 채널에서 고차 통계치를 이용한 적응 등화기에 관한 연구)

  • Lim, Seung-Gag
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.10
    • /
    • pp.2562-2570
    • /
    • 1997
  • This paper deals with the design and performance of the adaptive equalizer using high order statistics in order to improve the transmission characteristics of multipath fading channel. The multipath propagational phenomenon occurred in digital radio transmission causes the distortion and ISI of receiving signal. These are main reasons to increase the bit error rate and degrade the performance of receivers. In this paper, the adaptive equalization algorithm using high order statistics of received signal is used instead of CMA algorithm, Bussgang and Godard which are known widely. The performance of this algorithm (residualisi, recovered constellation, calculation) is presented varing SNR. As the result of the computer simulation, equalizer algorithm using high order statistics is better than CMA in the range of low SNR, $10{\sim}20dB$. Therefore, considering the actual communication systems which use the range of $14{\sim}20$ SNR, the adaptive equalizer using high order statistics can be used in the real multipath fading environment.

  • PDF

Performance Analysis of Electrical MMSE Linear Equalizers in Optically Amplified OOK Systems

  • Park, Jang-Woo;Chung, Won-Zoo
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.232-236
    • /
    • 2011
  • We analyze the linear equalizers used in optically amplified on-off-keyed (OOK) systems to combat chromatic dispersion (CD) and polarization mode dispersion (PMD), and we derive the mathematical minimum mean squared error (MMSE) performance of these equalizers. Currently, the MMSE linear equalizer for optical OOK systems is obtained by simulations using adaptive approaches such as least mean squared (LMS) or constant modulus algorithm (CMA), but no theoretical studies on the optimal solutions for these equalizers have been performed. We model the optical OOK systems as square-law nonlinear channels and compute the MMSE equalizer coefficients directly from the estimated optical channel, signal power, and optical noise variance. The accuracy of the calculated MMSE equalizer coefficients and MMSE performance has been verified by simulations using adaptive algorithms.

A Study on Performance Comparison of Bussgang-type Adaptive Blind Algorithms (Bussgang계열의 적응 Blind 알고리듬들의 성능비교에 관한 연구)

  • Kim, Hyoung-Seok;Kang, Hyun-Cheol;Byun, Youn-Shik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.5
    • /
    • pp.20-28
    • /
    • 1995
  • This paper studied adaptive blind equalizer which belong to Bussgang type. It is well known that blind equalizer performs equalization without using a training sequence. Especially, this paper concentrated on real time processing of them. The channel characteristic was obtained from measurements taken in a real urban multipath environment. A T/2 fractionally-spaced equalizer was used at the receiving end. Our computer simulations demonstrated that Stop and Go, Benveniste-Goursat, and optimal Bussgang algorithms have relatively low MSE property. CMA shows faster convergence property than any other of Bussgang type algorithm.

  • PDF