• Title/Summary/Keyword: channel efficiency

Search Result 1,538, Processing Time 0.035 seconds

Development of a Raster-based Two-dimensional Flood Inundation Model (래스터 기반의 2차원 홍수범람 모형의 개발)

  • Lee, Gi-Ha;Lee, Seung-Soo;Jung, Kwan-Sue
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.6
    • /
    • pp.155-163
    • /
    • 2010
  • The past researches on flood inundation simulation mainly focused on development of numerical models based on unstructured mesh networks to improve model performances. However, despite the accurate simulation results, such models are not suitable for real-time flood inundation forecasting due to a huge computational burden in terms of geographic data processing. In addition, even though various types of vector and raster data are available to be compatible with flood inundation models for post-processes such as flood hazard mapping and flood inundation risk analysis, the unstructured mesh-based models are not effective to fully use such information due to data incommensurability. Therefore, this study aims to develop a raster-based two-dimensional inundation model; it guarantees computational efficiency because of direct application of DEM for flood inundation modeling and also has a good compatibility with various types of raster data, compared to a commercial model such as FLUMEN. We applied the model to simulate the BaekSan levee break in the Nam river during a flood period from August 10 to 13, 2002. The simulation results showed a good agreement with the field-surveyed inundation area and were also very similar with results from the FLUMEN. Moreover, the model provided physically-acceptable velocity vectors with respect to inundating and returning flows due to the difference of water level between channel and lowland.

Design of a Block-Based 2D Discrete Wavelet Transform Filter with 100% Hardware Efficiency (100% 하드웨어 효율을 갖는 블록기반의 이차원 이산 웨이블렛 변환 필터 설계)

  • Kim, Ju-Young;Park, Tae-Guen
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.12
    • /
    • pp.39-47
    • /
    • 2010
  • This paper proposes a fully-utilized block-based 2D DWT architecture, which consists of four 1D DWT filters with two-channel QMF PR Lattice structure. For 100% hardware utilization, we propose a new method which processes four input values at the same time. On the contrary to the image-based 2D DWT which requires large memories, we propose a block-based 2D DWT so that we only need 2MN-3N of storages, where M and N stand for filter lengths and width of the image respectively. Furthermore, the proposed architecture processes in horizontal and vertical directions simultaneously so that it computes the DWT for an $N{\times}N$ image within a period of $N^2(1-2^{-2J})/3$. Compared to existing approaches, the proposed architecture shows 100% of hardware utilization and high throughput rate. However, the proposed architecture may suffer from the long critical path delay due to the cascaded lattices in 1D DWT filters. This problem can be mitigated by applying the pipeline technique with maximum four level. The proposed architecture has been designed with VerilogHDL and synthesized using DongbuAnam $0.18{\mu}m$ standard cell.

A Study on the Recognition about National Health Insurance Coverage of Denture, Implant of Elderly People (일부 노인층의 틀니, 임플란트 건강보험에 대한 인식도 연구)

  • Oh, Sang-Hwan;Lee, Yu-Jeong;Lee, Yoo-Jin;Lee, Jeong-Mi;Lee, Ju-Hee;Kim, Seol-Hee
    • Journal of dental hygiene science
    • /
    • v.14 no.4
    • /
    • pp.502-509
    • /
    • 2014
  • The purpose of this study was to investigate the recognition on the national health insurance of denture, implant among the elderly. This survey was performed on 238 of the elderly aged over 60 years in Daejeon. The research was performed using a self-reported questionnaire and interview method from June to July, 2014. The collected data was analyzed using chi-square test, multiple response frequencies by PASW Statistics ver. 18.0. Recognition of national health insurance denture coverage was 76.9%. Channel of information awareness is higher in the media (61.8%). Awareness of application time (36.4%), medical expense by insurance (43.2%) is generally low. And awareness of denture follow up management is significantly low (18.6%). Time of denture and implant coverage needs were over 60 and 65 years old respectively. The respondents want the national health insurance to help medical expenses over 50%. Period of implant and denture re-production required unlimitedness 32.0% and 47.8%, participation to oral hygiene (dentures) management by dental hygienist was 94.1%. In conclusion, denture and implant coverage was higher awareness, but details were not recognized. Therefore, we should provide more detailed information. To increase the efficiency of national health insurance should be considered to lower the coverage age.

Design of Binary Constant Envelope System using the Pre-Coding Scheme in the Multi-User CDMA Communication System (다중 사용자 CDMA 통신 시스템에서 프리코딩 기법을 사용한 2진 정진폭 시스템 설계)

  • 김상우;유흥균;정순기;이상태
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.5
    • /
    • pp.486-492
    • /
    • 2004
  • In this paper, we newly propose the binary CA-CDMA(constant amplitude CDMA) system using pre-coding method to solve the high PAPR problem caused by multi-user signal transmission in the CDMA system. 4-user CA-CDMA, the basis of proposed binary CA-CDMA system, makes binary output signal for 4 input users. It produces the output of binary(${\pm}$2) amplitude by using a parity signal resulting from the XOR operation of 4 users data. Another sub-channel or more bandwidth is not necessary because it is transmitted together with user data and can be easily recovered in the receiver. The extension of the number of users can be possible by the simple repetition of the basic binary 4-user CA-CDMA. For example, binary 16-user CA-CDMA is made easily by allocating the four 4-user CA-CDMA systems in parallel and leading the four outputs to the fifth 4-user CA-CDMA system as input, because the output signal of each 4-user CA-CDMA is also binary. By the same extension procedure, binary 64 and 256-user CA-CDMA systems can be made with the constant amplitude. As a result, the code rate of this proposed CA-CDMA system is just 1 and binary CA-CDMA does not change the transmission rate with the constant output signal(PAPR = 0 ㏈). Therefore, the power efficiency of the HPA can be maximized without the nonlinear distortion. From the simulation results, it is verified that the conventional CDMA system has multi-level output signal, but the proposed binary CA-CDMA system always produces binary output. And it is also found that the BER of conventional CDMA system is increased by nonlinear HPA, but the BER of proposed binary CA-CDMA system is not changed.

Conical Diffuser Design and Hydraulic Performance Characteristics in Bioreactor Using Empirical and Numerical Methods (원뿔형 산기관 설계와 생물반응조에서 수력학적 운전특성에 관한 실험 및 해석)

  • Lee, Seung-Jin;Ko, Kyeong-Han;Ko, Myeong-Han;Yang, Jae-Kyeong;Kim, Yong-Guk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.8
    • /
    • pp.633-643
    • /
    • 2015
  • In this study, we develop a highly efficient conical-air diffuser that generates fine bubble. By inserting a sufficient number of aerotropic microorganisms with dissolved oxygen from an air diffuser and minimizing the air-channel blockages within the air diffuser, we expect to improve the efficiency and durability of the decomposition process for organic waste. To upgrade the conventional air diffuser, we perform experiments and numerical analysis to develop a conical-type that generates fine bubble, and which is free from nozzle blockage. We complement the air-diffuser design by numerically analyzing the internal air-flow pattern within the diffuser. Then, by applying the diffuser to a mockup bioreactor, we experimentally and numerically study the bubble behavior observed in the diffuser and the 2-phase fluid flow in the bioreactor. The results obtained include statistics of the cord length and increased velocity, and we investigate the mechanisms of the fluid-flow characteristics including bubble clouds. Throughout the study, we systemize the design procedures for the design of efficient air diffusers, and we visualize the fluid-flow patterns caused by bubble generation within the mockup bioreactor. These results will provide a meaningful basis for further study as well as the detection of oxygen transfer and fluid-flow characteristics in real-scale bio-reactors using sets of air diffusers.

Numerical Modeling of Current Density and Water Behavior at a Designated Cross Section of the Gas Diffusion Layer in a Proton Exchange Membrane Fuel Cell (고분자전해질 연료전지의 동작압력에 대한 가스 확산층의 위치 별 전류밀도 및 수분거동에 대한 수치해석)

  • Kang, Sin-Jo;Kim, Young-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.161-170
    • /
    • 2012
  • There are many factors to consider when attempting to improve the efficiency of fuel cell operation, such as the operation temperature, humidity, stoichiometry, operation pressure, geometric features, etc. In this paper, the effects of the operation pressure were investigated to find the current density and water saturation behavior on a cross section designated by the design geometry. A two-dimensional geometric model was established with a gas channel that can provide $H_2$ to the anode and $O_2$ and water vapor to the cathode gas diffusion layer (GDL). The results from this numerical modeling revealed that higher operation pressures would produce a higher current density than lower ones, and the water saturation behavior was different at operation pressures of 2 atm and 3 atm in the cathode GDL. In particular, the water saturation ratios are higher directly below the collector than in other areas. In addition, this paper presents the dependence of the velocity behavior in the cathode on pressure changes, and the velocity fluctuations through the GDL are higher in the output area than in inlet area. This conclusion will be utilized to design more efficient fuel cell modeling of real fuel cell operation.

Design and Implementation of ISO/IEEE 11073 DIM Transmission Structure Based on oneM2M for IoT Healthcare Service (사물인터넷 헬스케어 서비스를 위한 oneM2M기반 ISO/IEEE 11073 DIM 전송 구조 설계 및 구현)

  • Kim, Hyun Su;Chun, Seung Man;Chung, Yun Seok;Park, Jong Tae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.4
    • /
    • pp.3-11
    • /
    • 2016
  • In the environment of Internet of Things (IoT), IoT devices are limited by physical components such as power supply and memory, and also limited to their network performance in bandwidth, wireless channel, throughput, payload, etc. Despite these limitations, resources of IoT devices are shared with other IoT devices. Especially, remote management of the information of devices and patients are very important for the IoT healthcare service, moreover, providing the interoperability between the healthcare device and healthcare platform is essential. To meet these requirements, format of the message and the expressions for the data information and data transmission need to comply with suitable international standards for the IoT environment. However, the ISO/IEEE 11073 PHD (Personal Healthcare Device) standards, the existing international standards for the transmission of health informatics, does not consider the IoT environment, and therefore it is difficult to be applied for the IoT healthcare service. For this matter, we have designed and implemented the IoT healthcare system by applying the oneM2M, standards for the Internet of Things, and ISO/IEEE 11073 DIM (Domain Information Model), standards for the transmission of health informatics. For the implementation, the OM2M platform, which is based on the oneM2M standards, has been used. To evaluate the efficiency of transfer syntaxes between the healthcare device and OM2M platform, we have implemented comparative performance evaluation between HTTP and CoAP, and also between XML and JSON by comparing the packet size and number of packets in one transaction.

Gate-Bias Control Technique for Envelope Tracking Doherty Power Amplifier (Envelope Tracking 도허티 전력 증폭기의 Gate-Bias Control Technique)

  • Moon, Jung-Hwan;Kim, Jang-Heon;Kim, Il-Du;Kim, Jung-Joon;Kim, Bum-Man
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.8
    • /
    • pp.807-813
    • /
    • 2008
  • The gate-biases of the Doherty power amplifier are controlled to improve the linearity performance. The linearity improvement mechanism of the Doherty amplifier is the harmonic cancellation of the carrier and peaking amplifier at the output power combining point. However, it is difficult to cancel the harmonic power for the broader power range because the condition for cancelling is varied by power. For the linearity improvement, we have explored the linearity characteristic of the Doherty amplifier according to the input power and gate biases of the carrier and peaking amplifier. To extend the region of harmonic power cancellation, we have injected the proper gate bias to the carrier and peaking amplifier according to the input power levels. To validate the linearity improvement, the Doherty amplifier is designed using Eudyna 10-W PEP GaN HEMT EGN010MKs at 2.345 GHz and optimized to achieve a high linearity and efficiency at an average output power of 33 dBm, backed off about 10 dB from the $P_{1dB}$. In the experiments, the envelope tracking Doherty amplifier delivers a significantly improved adjacent channel leakage ratio performance of -37.4 dBc, which is an enhancement of about 2.8 dB, maintaining the high PAE of about 26 % for the WCDMA 1-FA signal at an average output power of 33 dBm. For the 802.16-2004 signal, the amplifier is also improved by about 2 dB, -35 dB.

The Gain and Phase Mismatch Detection Method with Closed Form Solution for LINC System Implementation (LINC 시스템 구현을 위한 닫힌 해를 갖는 크기 위상 오차 검출 기법)

  • Myoung, Seong-Sik;Lee, Il-Kyoo;Lim, Kyu-Tae;Yook, Jong-Gwan;Laskar, Joy
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.5
    • /
    • pp.547-555
    • /
    • 2008
  • This parer proposed the path mismatch detection and compensation algorithm with closed form for linear amplification with non-linear components(LINC) system implementation. The LINC system has a merit of using the high efficient amplifier by transferring the non-constant envelop signal which is high peak to average signal ratio into constant envelop signal. However, the performance degradation is very sensitive to the path mismatch such as an amplitude mismatch and a phase mismatch. In order to improve the path mismatch, the error detection and compensation method is introduced by the use of four test signals. Since the presented method has the closed form solution, the efficient and fast detection is available. The digital-IF structure of LINC system applied by the proposed error detection and compensation algorithm was implemented. The performance was evaluated with the IEEE 802.16 WiMAX baseband sinal which has 7 MHz channel bandwidth and 16-QAM. The Error Vector Magnitude(EVM) of -37.37 dB was obtained through performance test, which meets performance requirement of -24 dB EVM. As a result, the introduced error detection and compensation method was verified to improve the LINC system performance.

Grid Based Rainfall-Runoff Modeling Using Storage Function Method (저류함수기법을 이용한 격자기반의 강우-유출 모형 개발)

  • Shin, Cheol-Kyun;Cho, Hyo-Seob;Jung, Kwan-Sue;Kim, Jae-Han
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.11
    • /
    • pp.969-978
    • /
    • 2004
  • According to the report of hydrologic modeling study, from a quantitative point of view, a lumped model is more efficient than a distributed model. A distributed model has to simplify geospatial characteristics for the shake of restricted application on computer calculation and field observation. In this reason, a distributed model can not help having some errors of water quantity modelling. However, considering a distribution of rainfall-runoff reflected spatial characteristics, a distributed model is more efficient to simulate a flow of surface water, The purpose of this study is modeling of spatial rainfall-runoff of surface water using grid based distributed model, which is consisted of storage function model and essential basin-channel parameters( slope, flow direction & accumulation), and that procedure is able to be executed at a personal computer. The prototype of this model is developed in Heongseong Multipunose Dam basin and adapted in Hapchon Multipurpose Dam basin, which is larger than the former about five times. The efficiency coefficients in result of two dam basin simulations are more than about 0.9, but ones at the upstream water level gauge station meet with bad result owing to overestimated rating curves in high water level. As a result of this study, it is easily implemented that spatially distributed rainfall-runoff model using GIS, and geophysical characteristics of the catchment, hereafter it is anticipated that this model is easily able to apply rainfall data by real time.