• Title/Summary/Keyword: channel decoder

Search Result 343, Processing Time 0.022 seconds

MF based Frequency Domain Iterative Equalization for Single-Carrier Transmission with EST Pre-coder (EST Pre-coder를 가진 Single Carrier 전송을 위한 MF기반의 주파수영역 반복 등화기법)

  • Choi, Yun-Seok;Lee, Yeon-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.5C
    • /
    • pp.295-301
    • /
    • 2011
  • In [1], it has been shown that the energy spreading transform (EST) based iterative equalizer (IE) could enhance its performance by improving the reliability of the decision feedback symbols without the help of the complicated channel decoder. In the matched filter (MF) based IE proposed in [1], however, its feedforward filter (FFF) has been designed in the frequency domain while its feedback filter (FBF) in the time domain. So its complexity increases proportional to the channel memory length. To solve this problem, in this paper, both FFF and FBF are designed in the frequency domain. This enables the proposed frequency domain IE (FD-IE) to achieve the lower complexity over the conventional method in the highly dispersive channel. In addition, simulation results demonstrate that the BER performance of the proposed method is the same as the conventional.

Channel Coding Algorithm using Absolute Mean Values for the Difference Values of Soft Output in Digital Mobile Communication System (디지털 이동통신 시스템에서 연판정 출력의 차이값에 대한 절대평균값을 이용한 채널부호화 알고리즘)

  • Jeong, Dae-Ho;Kim, Hwan-Yong;Lim, Soon-Ja
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.10
    • /
    • pp.67-74
    • /
    • 2007
  • Turbo code, a kind of channel coding technique, has ben used in the field of digital mobile communication system if the number of iterations is increased in the several channel environments, my further iteration results in very little improvement, and requires much delay and computation in proportion to the number of iterations. In this paper, it proposes an efficient stopping rules for the iteration process in turbo decoding. By using absolute mean values for the LLR difference values between the first and second decoder in the present decoding process, the proposed algorithm can largely reduce the average number of iterations without BER performance degradation in all SNR regions. As a result of simulation, the average number of iterations of proposed algorithm is reduced by about $18.25%{\sim}20.58%$ compared to SDR algerian in the lower SNR region, and is reduced by about $22.96%{\sim}28.74%$ compared to method using variance values of extrinsic information in the upper SNR region.

Performance Analysis on the Multiple Trellis Coded CPFSK for the Noncoherent Receiver without CSI (채널 상태 정보를 사용하지 않는 비동기식 복조기를 위한 다중 격자 부호화 연속 위상 주파수 변조 방식의 성능분석)

  • 김창중;이호경
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.10C
    • /
    • pp.942-948
    • /
    • 2003
  • In this paper, we analyze the performance of multiple trellis coded modulation applied to continuous phase frequency shift keying (MTCM/CPFSK) for the noncoherent receiver without channel state information (CSI) on the interleaved Rician fading channel. In this system, the squared cross-correlation between the received signal and a candidate signal is used as the branch metric of the Viterbi decoder. To obtain the bit error performance of this system, we analyze the approximated pairwise error probability (PEP) and the exact PEP. We also derive the equivalent normalized squared distance (ENSD) and compare it with the ENSD of the noncoherent receiver with perfect CSI. Simulation results are also provided to verify the theoretical performance analysis.

Faster Than Nyquist Transmission with Multiple Channel Codes (다중 채널 부호를 이용한 FTN 전송 시스템)

  • Kang, Donghoon;Kim, Haeun;Yun, Joungil;Lim, Hyoungsoo;Oh, Wangrok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.2
    • /
    • pp.157-162
    • /
    • 2016
  • The performance of turbo-like codes highly depends on their frame size and thus, the bit error rate performance of turbo-like codes can be improved by increasing the frame size. Unfortunately, increasing the frame size of channel codes induces some drawbacks such as the increase of not only encoding and decoding complexity but also transmission and decoding latencies. On the other hand, a faster than Nyquist (FTN) transmission causes intentional inter-symbol interference (ISI) and thus, induces some correlation among the transmission symbols. In this paper, we propose an FTN transmission with multiple channel codes. By exploiting the correlation among the modulated symbols, multiple code frames can be regarded as a code frame with a lager frame size. Due to the inherent parallel encoding scheme of proposed scheme, parallel decoding can be easily implemented.

The Efficient Error Resilient Entropy Coding for Robust Transmission of Compressed Images (압축 영상의 강건한 전송을 위한 효과적인 에러 내성 엔트로피 부호화)

  • Cho, Seong-Hwan;Kim, Eung-Sung;Kim, Jeong-Sig
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.2
    • /
    • pp.206-212
    • /
    • 2006
  • Many image and video compression algorithms work by splitting the input image into blocks and producing variable-length coded bits for each block data. If variable-length coded data are transmitted consecutively, then the resulting coder is highly sensitive to channel errors. Therefore, most image and video techniques for providing some protection to the stream against channel errors usually involve adding a controlled amount of redundancy back into the stream. Such redundancy might take the form of resynchronization markers, which enable the decoder to restart the decoding process from the known state, in the event of transmission errors. The Error Resilient Entropy Code (EREC) is a well known method which can regain synchronization without any redundant information to convert from variable-length code to fixed-length code. This paper proposes an enhancement to EREC, which greatly improves its transmission ability for the compressed image quality without any redundant bits in the event of errors. The simulation result shows that the both objective and subjective quality of transmitted image is enhanced compared with the existing EREC at the same BER(Bit Error Rate).

  • PDF

Transform domain Wyner-Ziv video coding with successively improving side information based on decoding reliability (복호 신뢰도에 기반하여 점진적으로 보조정보를 향상시키는 변환영역 Wyner-Ziv 부호화 방법)

  • Ko, Bong-Hyuck;Shim, Hiuk-Jae;Jeon, Byeung-Woo
    • Journal of Broadcast Engineering
    • /
    • v.13 no.6
    • /
    • pp.892-904
    • /
    • 2008
  • As a video encoding in resource constrained environments such as sensor networks has become an important issue, DVC(Distributed Video Coding) has been intensively investigated as a solution for light weighted video encoding problem. Known as one of the representative schemes of DVC, the Wyner-Ziv coding generates side information of current frame only at decoder, using correlation among frames, and reconstructs video through noise elimination on the side information using channel code. Accordingly, the better quality of side information brings less channel noise, thus attains better coding performance of the Wyner-Ziv coder. However, since it is hard for decoder to generate an accurate side information without any information of original frame, a method to successively improve side information using successively decoded original frame, based on decoding reliability, was previously developed. However, to improve side information from decoding results, not only an error rate of the decoding result as a reliability, but also the amount of reliable information from the decoding result is important. Therefore, we propose TDWZ(Transform-domain Wyner-Ziv coding) with successively improving side information based on decoding reliability considering not only an error rate but also the amount of reliable information of the decoding results. Our experiment shows the proposed method gains average PSNR up to 1.7 dB over the previous TDWZ, that is without successive side information improvement.

Performance Evaluation of the Iterative Demapping and Decoding based DVB-T2 BICM module (Iterative Demapping and Decoding 기반 차세대 유럽형 디지털 지상파 방송 시스템(DVB-T2)의 BICM 성능 평가)

  • Jeon, Eun-Sung;Seo, Jeong-Wook;Yang, Jang-Hoon;Kim, Dong-Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.2A
    • /
    • pp.172-178
    • /
    • 2011
  • In this paper, the performance of bit interleaved of coded and modulation(BICM) module of the second generation of digital terrestrial television broadcasting system(DVB-T2) is evaluated with the help of computer simulation. The frame error rate performance is studied in AWGN, Rayleigh fading and 15% erasure channels. In addition, iterative receiver is considered that exchanges extrinsic information between the rotated demapper and the LDPC decoder. Through the simulation it is observed that under the flat fading Rayleigh channel, about 1.2dB gain at FER of $10^{-4}$ is introduced when rotated constellation and iterative demapping and decoding are employed. Under the 15% earasure channel, rotated constellation gives performance gain of about 5dB at BER of $10^{-4}$ and when IDD is applied, additional performance gain of about 3dB can be achieved.

Experimental Performance Analysis of BCJR-Based Turbo Equalizer in Underwater Acoustic Communication (수중음향통신에서 BCJR 기반의 터보 등화기 실험 성능 분석)

  • Ahn, Tae-Seok;Jung, Ji-Won
    • Journal of Navigation and Port Research
    • /
    • v.39 no.4
    • /
    • pp.293-297
    • /
    • 2015
  • Underwater acoustic communications has been limited use for military purposes in the past. However, the fields of underwater applications expend to detection, submarine and communication in recent. The excessive multipath encountered in underwater acoustic communication channel is creating inter symbol interference, which is limiting factor to achieve a high data rate and bit error rate performance. To improve the performance of a received signal in underwater communication, many researchers have been studied for channel coding scheme with excellent performance at low SNR. In this paper, we applied BCJR decoder based ( 2,1,7 ) convolution codes and to compensate for the distorted data induced by the multipath, we applying the turbo equalization method. Through the underwater experiment on the Gyeungcheun lake located in Mungyeng city, we confirmed that turbo equalization structure of BCJR has better performance than hard decision and soft decision of Viterbi decoding. We also confirmed that the error rate of decoder input is less than error rate of $10^{-1}$, all the data is decoded. We achieved sucess rate of 83% through the experiment.

An FPGA Implementation of the Synthesis Filter for MPEG-1 Audio Layer III by a Distributed Arithmetic Lookup Table (분산산술연산방식을 이용한 MPEG-1 오디오 계층 3 합성필터의 FPGA 군현)

  • Koh Sung-Shik;Choi Hyun-Yong;Kim Jong-Bin;Ku Dae-Sung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.8
    • /
    • pp.554-561
    • /
    • 2004
  • As the technologies of semiconductor and multimedia communication have been improved. the high-quality video and the multi-channel audio have been highlighted. MPEG Audio Layer 3 decoder has been implemented as a Processor using a standard. Since the synthesis filter of MPEG-1 Audio Layer 3 decoder requires the most outstanding operation in the entire decoder. the synthesis filter that can reduce the amount of operation is needed for the design of the high-speed processor. Therefore, in this paper, the synthesis filter. the most important part of MPEG Audio, is materialized in FPGA using the method of DAULT (distributed arithemetic look-up table). For the design of high-speed synthesis filter, the DAULT method is used instead of a multiplier and a Pipeline structure is used. The Performance improvement by 30% is obtained by additionally making the result of multiplication of data with cosine function into the table. All hardware design of this Paper are described using VHDL (VHIC Hardware Description Language) Active-HDL 6.1 of ALDEC is used for VHDL simulation and Synplify Pro 7.2V is used for Model-sim and synthesis. The corresponding library is materialized by XC4013E and XC4020EX. XC4052XL of XILINX and XACT M1.4 is used for P&R tool. The materialized processor operates from 20MHz to 70MHz.

A Fast Error Concealment Using a Data Hiding Technique and a Robust Error Resilience for Video (데이터 숨김과 오류 내성 기법을 이용한 빠른 비디오 오류 은닉)

  • Kim, Jin-Ok
    • The KIPS Transactions:PartB
    • /
    • v.10B no.2
    • /
    • pp.143-150
    • /
    • 2003
  • Error concealment plays an important role in combating transmission errors. Methods of error concealment which produce better quality are generally of higher complexity, thus making some of the more sophisticated algorithms is not suitable for real-time applications. In this paper, we develop temporal and spatial error resilient video encoding and data hiding approach to facilitate the error concealment at the decoder. Block interleaving scheme is introduced to isolate erroneous blocks caused by packet losses for spatial area of error resilience. For temporal area of error resilience, data hiding is applied to the transmission of parity bits to protect motion vectors. To do error concealment quickly, a set of edge features extracted from a block is embedded imperceptibly using data hiding into the host media and transmitted to decoder. If some part of the media data is damaged during transmission, the embedded features are used for concealment of lost data at decoder. This method decreases a complexity of error concealment by reducing the estimation process of lost data from neighbor blocks. The proposed data hiding method of parity bits and block features is not influence much to the complexity of standard encoder. Experimental results show that proposed method conceals properly and effectively burst errors occurred on transmission channel like Internet.