• Title/Summary/Keyword: channel contration

Search Result 2, Processing Time 0.015 seconds

Analysis for the Effectiveness of Sedimentation Reduction Using the Channel Contraction Method at the Estuary Barrage (하구둑에서의 하폭축소 방법을 이용한 퇴사저감 효과 분석)

  • Ji, Un;Kim, Gwon-Han;Yeo, Woon-Kwang
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.1
    • /
    • pp.31-40
    • /
    • 2011
  • In this study, the methods of sedimentation reduction for the estuary barrage were analyzed using the CCHE2D bed change model. Especially, the effectiveness of sediment dredging currently applied in the field was evaluated quantitatively and also the channel contraction method which is a substitute method was analyzed for the Nakdong River Estuary Barrage (NREB). The numerical model was calibrated and validated for the sediment transport equations and transport modes. In the NREB case, the Ackers and White formula and bed load type was the most similar to the field condition. As a results of the dredging simulation, there was the sedimentation reduction effect of 0.2 m in the bed changes. Furthermore, the analysis result of the channel contraction method represented that the sedimentation reduction effects of the average 0.4 m and the maximum 2.0 m were produced.

Effect of Pancreatic Polypeptide Family on Cardiovascular Muscle Contractility: 1. Interactions with cyclic nucleotide activators and $K^+$ channel openers in canine cerebral arteries (Pancreatic Polypeptide Family의 심혈관계 근육 수축성에 대한 약리학적 작용: I. 개의 뇌혈관에서 cyclic nucleotide활성제와 칼륨통로개방제와의 상호작용)

  • Kim, Won-Joon;Lee, Kwang-Youn;Ha, Jeoung-Hee;Kwon, Oh-Cheol
    • The Korean Journal of Pharmacology
    • /
    • v.28 no.2
    • /
    • pp.147-162
    • /
    • 1992
  • The objectives of the present experiments were to characterize the effects of the peptides belonging to the pancreatic polypeptide family on the contractility of cerebral arteries and to observe the interactions of these peptides with the cyclic nucleotide activators and the potassium channel openers. Dogs of either sex, $20{\sim}30\;Kg$ in weight, were sacrificed. Basilar and middle cerebral arteries from brain were isolated and prepared for myography in the PSS equilibrated with 95% $O_2$ and 5% $CO_2$ at $37^{\circ}C$. The endothelial cells of the spiral strips were removed by CHAPS solution (0.3% w/v, 15 seconds). 1. PP, PYY and NPY contracted the arterial strips concentration-dependently with a rank order of potency of PYY>NPY>PP. These peptides were 20 to 200 times more potent than norepinephrine, and only PYY showed a greater potency than 5-HT. 2. Cyclic nucleotide activators, forskolin (for cAMP) and sodium nitroprusside (for cGMP) reduced the basal tone and inhibited the PP-, PYY- and NPY- induced contractions by concentration-dependent manners. Forskolin was more potent in reducing basal tone than sodium nitroprusside. 3. Potassium channel openers, RP 49356, P 1060 and BRL 38227 reduced the basal tone concentration-dependently and tended to inhibit the PP-, PYY- and NPY- induced contractions. Notably, BRL 38227 with low concentration $(0.1\;{\mu}M)$ enhanced the contractions induced by those peptides while P 1060 inhibited the contractions concentration-dependently. 4. The combinations of the cyclic nucleotide activators and the potassium channel openers were slightly additive in reducing the basal tone. P 1060 and BRL 38227 enhanced the relaxant effect of sodium nitroprusside significantly. On the PYY-induced contration $(0.1\;{\mu}M)$, $K^+$ channel openers tended to inhibit the inhibitory actions of forskolin and sodium nitroprusside. P 1060 and BRL 38227 antagonized the inhibitory action of sodium nitroprusside significantly. The results of the present study may be summarized that in canine cerebral arteries, not only NPY but also PYY may play a role in a cerebrovascular spasm, and intracellular concentration of either cAMP or cGMP may be involved in the mechanism of vasoconstrictive actions of these peptides, which may be affected either positively or negatively by a $K^+$ channel opener.

  • PDF