• Title/Summary/Keyword: channel bandwidth

Search Result 897, Processing Time 0.029 seconds

Resource Allocation and Control System for VoIP QoS Provision in Cognitive Radio Networks (인지 무선네트워크에서 VoIP QoS 보장을 위한 자원 할당 및 제어 시스템)

  • Kim, Bosung;Lee, Gyu-Min;Roh, Byeong-Hee;Choi, Geunkyung;Oh, Ilhyuk
    • KIISE Transactions on Computing Practices
    • /
    • v.20 no.12
    • /
    • pp.688-693
    • /
    • 2014
  • With the advent of ubiquitous environments, the smart phone has come into wide use and the demand for various content increases. Thus, in order to efficiently utilize limited resources cognitive radio technology is regarded as a possible solution. Besides spectrum sensing or access schemes, the provision of VoIP traffic service for secondary users with limited spectrum resources is a very important issue. In this paper, a resource allocation and control system for VoIP QoS provision in cognitive radio networks is proposed. Firstly, as the system model, the time structure of the network is addressed and, according to the structure, a bandwidth broker is proposed. In addition, based on available bandwidth estimated by the bandwidth broker, a connection admission control for secondary users is developed. It is demonstrated that the provision of VoIP QoS is greatly affected by channel utilization, the number of channels, and the length of timeslot.

Priority-based Intelligent Uplink Random Access Scheme for Fourth-generation Cellular Systems and Its Standardization (4세대 이동통신시스템을 위한 우선순위 기반 지능적 상향링크 랜덤 접속 방법 및 표준화)

  • Moon, Jung-Min;Lee, Ho-Won;Cho, Dong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12B
    • /
    • pp.1623-1635
    • /
    • 2011
  • Fourth-generation (4G) cellular communication systems must provide different quality-of-service (QoS) to users according to the service type, membership class, and usage case of each user. For the purpose of user's QoS differentiation, we propose an enhanced uplink random access scheme for bandwidth request. More specifically, we divide a bandwidth request channel into two parts: One is a primary region and the other is a secondary region. Then, each region has a unique minimum access class that allows only specific users to perform random access through that region. By doing so, we can reduce collision probability and increase the success probability of bandwidth request. From the perspective of standardization, we presented this scheme in the IEEE 802.16m Session #66 held on March 2010. As a result, the concept of the proposed scheme and required messages were defined in the 802.16m standard.

A Study on Calculation of Protection Ratio for Frequency Coordination in Microwave Relay System Networks (M/W 중계 시스템 망의 주파수 조정을 위한 보호비 계산에 대한 연구)

  • Suh Kyoung-Whoan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.2 s.105
    • /
    • pp.139-147
    • /
    • 2006
  • This paper suggests an efficient method of protection ratio calculation and shows some results applicable to frequency coordination in microwave(M/W) relay system networks, and the net filter discrimination(NFD) associated with Tx spectrum mask and overall Rx filter characteristics has been examined to obtain the adjacent channel protection ratio. The protection ratio comprises several factors such as C/N of modulation scheme, noise-to-interference ratio, multiple interference allowance, fade margins of multi-path and rain attenuation, and NFD. According to computed results for 6.7 GHz, 64-QAM, and 60 km at BER $10^{-6}$, fade margin and co-channel protection ratio are 41.1 and 75.2 dB, respectively. NFD for channel bandwidth of 40 MHz reveals 28.9 dB at the first adjacent channel, which results in adjacent channel protection ratio of 46.3 dB. In addition, NFD and protection ratio for different systems with channel bandwidth 20 and 40 MHz have been investigated to be used for actual M/W networks. The proposed method provides some merits of an easy calculation, systematic extension, and applying the same concept to frequency coordination in millimeter wave relay system networks.

Design and Evaluation of a Channel Reservation Patching Method for True VOD Systems (True VOD 시스템을 위한 채널 예약 패칭 방법의 설계 및 평가)

  • Lee, Joo-Yung;Ha, Sook-Jeong;Bae, Ihn-Han
    • The KIPS Transactions:PartB
    • /
    • v.9B no.6
    • /
    • pp.835-844
    • /
    • 2002
  • The number of channels available to a video server is limited since the number of channels a video server can support is determined by its communication bandwidth. Several approaches such as batching, piggybacking and patching have been proposed to reduce I/O demand on the video server by sharing multicast data. Patching has been shown to be efficient in the matter of the cost for VOD systems. Unlike conventional multicast techniques, patching is a dynamic multicast scheme which enables a new request to join an ongoing multicast. In addition, true VOD can be achieved since a new request can be served immediately without having to wait for the next multicast. In this paper. we propose two types of channel reservation patching algorithm : a fixed channel reservation patching and a variable channel reservation patching. To immediately schedule the requests for popular videos, these algorithms reserve the channels of video server for the fixed number of popular videos or for the variable number of popular videos which is determined dynamically according to the load of video server. The performance of the proposed algorithms is evaluated through simulations, and compared with that of simple patching. Our performance measures are average defection rate, average latency, service fairness and the amount of buffered data according to video server loads. Simulation results show that the proposed channel reservation patching algorithms provide better performance compared to simple patching algorithm.

Design and Evaluation of a Buffering Patching Technique for VOD Systems (주문형 비디오 시스템을 위한 버퍼링 패칭 기법의 설계 및 평가)

  • 하숙정;배인한
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.10
    • /
    • pp.523-532
    • /
    • 2003
  • Video on Demand(VOD) services cause high resource consumption in a video seuer, because multimedia are characterized by continuous playback, a high bandwidth requirement, and long playback duration. Patching has been proposed to save the network I/O bandwidth of a video server. To achieve true VOD, patching uses multicasting to share video streams, thereby providing immediate VOD services to users without any service latency. A communication channel is used to either multicast the entire video as a regular channel or multicast only the leading portion of a video as a Patching channel. This paper Proposes a buffering patching technique that divides regular channels, as used in patching, into sub-regular channels and regular channels to shorten the holding time of the channels. In the proposed technique, the last portion of video data, corresponding to the size of the buffering window, is not transferred by sub-regular channels, but rather downloaded and buffered in the user buffer from the latest regular channel. When simulations were performed to compare the performance of the proposed technique with that of conventional patching, the results indicated that the proposed technique was superior in terms of the defection rate, average service latency, and fairness, although the amount of video data buffered at each user station was higher than that with patching.

Underwater Channel Environment Analysis Using 10Khz Carrier Frequency at the Shore of West Sea (10kHz 반송파를 사용한 서해안 수중 채널환경 분석)

  • Kim, Min-sang;Ko, Hak-lim;Kim, Kye-won;Lee, Tae-seok;Im, Tae-ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.1
    • /
    • pp.132-139
    • /
    • 2016
  • This study was carried out near the waters of Jango port, Dangjin-gun, Chungcheongnam-do by utilizing 10kHz carrier frequency, for the purpose of measurement and analysis of underwater channel environment of the Western sea. For the measurement of horizontal channel environment, the separation distance between transmitter and receiver is made differently in the range between 10m and 4000m. Meanwhile, for the measurement of vertical channel environment, transmission and receiving side ships are fixed as contacted each other and measured differently depending on their depth of submergence. In this study, the Coherence Bandwidth and the Coherence Time were estimated by analyzing the Power delay profile of the real sea based on the measured data, and analyzing the doppler frequency through frequency conversion of received tone-signal, respectively. This study is expected to become a base study in carrying out the frame design for underwater communication to improve the communication and secure the reliability of communication in future underwater channel environment.

A Novel 3-Level Transceiver using Multi Phase Modulation for High Bandwidth

  • Jung, Dae-Hee;Park, Jung-Hwan;Kim, Chan-Kyung;Kim, Chang-Hyun;Kim, Suki
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.791-794
    • /
    • 2003
  • The increasing computational capability of processors is driving the need for high bandwidth links to communicate and store the information that is processed. Such links are often an important part of multi processor interconnection, processor-to-memory interfaces and Serial-network interfaces. This paper describes a 0.11-${\mu}{\textrm}{m}$ CMOS 4 Gbp s/pin 3-Level transceiver using RSL/(Rambus Signaling Logic) for high bandwidth. This system which uses a high-gain windowed integrating receiver with wide common-mode range which was designed in order to improve SNR when operating with the smaller input overdrive of 3-Level. For multi-gigabit/second application, the data rate is limited by Inter-Symbol Interference (ISI) caused by low pass effects of channel, process-limited on-chip clock frequency, and serial link distance. In order to detect the transmited 4Gbps/pin with 3-Level data sucessfully ,the receiver is designed using 3-stage sense amplifier. The proposed transceiver employes multi-level signaling (3-Level Pulse Amplitude Modulation) using clock multi phase, double data rate and Prbs patten generator. The transceiver shows data rate of 3.2 ~ 4.0 Gbps/pin with a 1GHz internal clock.

  • PDF

Design and Performance Evaluation of a Media Access Control Algorithm supporting Weighted Fairness among Users in Ethernet PON (Ethernet PON에서 가입자간 가중치 공평성을 보장하는 매체접근 제어 알고리즘의 설계 및 성능 분석)

  • 최은영;이재용;김병철;권영미
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.8
    • /
    • pp.45-53
    • /
    • 2004
  • This paper proposes and analyzes a new media access control (MAC) scheduling algorithm, “Interleaved Polling with Deficit Round Robin (IPDRR)” that supports weighted fairness among ONUs in Ethernet Passive Optical Network (PON). The purpose of the proposed IPDRR algerian is not only to eliminate the unused bandwidth of upstream ONU traffic, but also to provide weighted fair sharing of upstream bandwidth among ONUs in Ethernet PON systems. Simulation results show that the IPDRR improves the utilization of upstream channel by removing the unused bandwidth and provides weighted fairness among ONUs, although the IPACT scheduling is unfair according to traffic characteristics.

Performance Analysis of MAC Protocols for Ethernet PON (이더넷 PON을 위한 MAC 프로토콜 성능 분석)

  • 안계현;이봉주;한경은;강동국;김영천
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.5B
    • /
    • pp.457-465
    • /
    • 2003
  • In this paper, we analyze the performances of variable MAC (Medium Access Control) protocols and present an efficient MAC protocol for Ethernet PON (Passive Optical Network). We consider three MAC protocols: static TDMA, dynamic TDMA, and Interleaved polling. Static TDMA assigns an equal amount of bandwidth to all ONUs regardless of the request information but Dynamic TDMA dynamically allocates the bandwidth to each ONU considering its request. Interleaved Polling operates a cycle with variable time period and a polling method for informing a uplink transmission chance to each ONU. This paper theoretically analyzes the available bandwidth for each of three protocols. We also implement the simulation models for them by using OPNET and evaluates the performances under various bursty traffic environments. The results are compared and analyzed in terms of channel utilization and queueing delay.

A study on the biorthogonally coded Q$^{2}$AM with constant envelope property (정진폭특성을 갖는 Birothogonal 부호로 부호화된 Q$^{2}$AM(Quadrature Quadrature Amplitude Modulation)에 관한 연구)

  • 박인재;심수보
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.9
    • /
    • pp.2470-2480
    • /
    • 1996
  • The energy efficiency and bandwidth efficiency are two important criterion in designing a modulation scheme Especially the constant envelope property must be considered as in the non-linear channel tht exit, for example in the nonlinear amplifiers for satellite repeater. The Q$^{2}$AM(Quadrature Quadrature Amplitude Modulation) is a new modulation scheme which combines the Q$^{2}$PSK(Quadrature Quadrature Phase Shift Keying) scheme which increases the signal space dimension and the QAM scheme which increases the bandwidth efficiency using the multi-level signal. The Q$^{2}$AM scheme has by far superior spectrum efficiency compared with the existing modulation schemes. Applying this scheme in the non-linear communication system increses the bandwidth efficiency but cannot envelop property. In this paper, a new system architecture is suggested which satisfies the large spectrum efficiency and constant envelope property by implementing the linear block coding prior to the Q$^{2}$AM modulation. the system has improved in performance by gaining the constant envelope and the additional coding gain. We able to observe the performance improvement of the suggested system(at BER=10$^{-5}$ ) of 4.4 dB for the 16-QAM and 0.7 dB for the Q$^{2}$PSK under the exact spectrum efficiency.

  • PDF