• Title/Summary/Keyword: channel attention

Search Result 388, Processing Time 0.046 seconds

Fundamental Theory of flow of water in bends of open channel (하천의 만곡류에 관한 이론적 고찰)

  • 선우중호;윤영남
    • Water for future
    • /
    • v.10 no.1
    • /
    • pp.53-70
    • /
    • 1977
  • The analysis performed here is aimed to increase the familiarity of hydrologic process especially for the small basins which are densely gaged. Kyung An and Mu Shim river basins are selected as a representative basin according to the criteria which UNESCO has established back in 1964 and being operated under the auspice of Ministry of Construction. The data exerted from these basins is utilized for the determination of characteristics of procipitation and runoff phenomena for the small basin, which is considered as a typical Korean samall watershed. The study found that the areal distribution of preciptation did not show any significant deviation from the point rainfall. Since the area studied is less than 20 km#, the pointrainfall may be safely utilized as a representative value for the area. Also the effect of elevation on the precipitation has a minor significance in the small area where the elevation difference is less than 200m. The methodology developed by Soil Conservation Service for determination of runoff value from precipitation is applied to find the suitability of the method to Korean river basin. The soil cover complex number or runoff curve number was determined by comsidering the type of soil, soil cover, land use and other factors such as antecedent moisture content. The average values of CN for Kyung An and Mushim river basins were found to be 63.9 and 63.1 respectively under AMC II, however, values obtained from soil cover complex were less than those from total precipitation and effective precipitation about 10-30%. It may be worth to note that an attention has to be paid in application of SCS method to Korean river basin by adjusting 10-30% increase to the value obtained from soil cover complex. Finally, the design flood hydrograph was consturcted by employing unit hydrograph technique to the dimensionless mass curve. Also a stepwise multiple regression was performed to find the relationship between runoff and API, evapotranspiration rate, 5 days antecedentprecipitation and daily temperature.

  • PDF

Antenna Selection Scheme for BD Beamforming-based Multiuser Massive MIMO Communication Systems (BD 빔포밍을 이용한 다중 사용자 기반 거대 안테나 통신 시스템용 안테나 선택 기법)

  • Ban, Tae-Won;Jung, Bang Chul;Park, Yeon-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.433-436
    • /
    • 2013
  • Massive MIMO communication system with huge antennas has been attracting intensive attention as one of key technologies to increase the spectral efficiency. Many previous studies investigated single user Massive MIMO scheme in cellular downlink. Recently, however, intensive researches on multiuser-based Massive MIMO are performed to overcome the problem caused by the limited number of antennas in mobile stations. Although the Massive MIMO scheme based on huge number of antennas inevitably causes hardware and computational complexity in baseband and radio frequency (RF) elements, the problem can be mitigated without serious performance degradation by limiting the number of baseband and RF elements below the number of transmit antennas of base station and opportunistically selecting transmit antennas according to channel states, where the number of selected antennas corresponds to the number of baseband and RF elements in base station. Accordingly, this paper proposes a simple antenna selection scheme for multiuser-based Massive MIMO systems. Our simulation results indicate that the proposed antenna selection scheme can achieve comparable performance to the conventional scheme without antenna selection.

  • PDF

Adaptive User Selection in Downlink Multi-User MIMO Networks (다중 사용자 및 다중 안테나 하향링크 네트워크에서 적응적 사용자 선택 기법)

  • Ban, Tae-Won;Jung, Bang Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.7
    • /
    • pp.1597-1601
    • /
    • 2013
  • Multiple antenna technique is attracting attention as a core technology for next-generation mobile communication systems to accommodate explosively increasing mobile data traffic. Especially, recent researches focus on multi-user multiple input multiple output (MU-MIMO) system where base stations are equipped with several tens of transmit antennas and transmit data to multiple terminals (users) simultaneously. To enhance the performance of MU-MIMO systems, we, in this paper, propose an adaptive user selection algorithm which adaptively selects a user set according to varying channel states. According to Monte-Carlo based computer simulations, the performance of proposed scheme is significantly improved compared to the conventional scheme without user selection and approaches that of exhaustive search-based optimal scheme. On the other hand, the proposed scheme can reduce the computational complexity to $K/(2^K-1)$ compared to the optimal scheme where K denotes the number of total users.

Endothelial Ca2+ signaling-dependent vasodilation through transient receptor potential channels

  • Hong, Kwang-Seok;Lee, Man-Gyoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.4
    • /
    • pp.287-298
    • /
    • 2020
  • Ca2+ signaling of endothelial cells plays a critical role in controlling blood flow and pressure in small arteries and arterioles. As the impairment of endothelial function is closely associated with cardiovascular diseases (e.g., atherosclerosis, stroke, and hypertension), endothelial Ca2+ signaling mechanisms have received substantial attention. Increases in endothelial intracellular Ca2+ concentrations promote the synthesis and release of endothelial-derived hyperpolarizing factors (EDHFs, e.g., nitric oxide, prostacyclin, or K+ efflux) or directly result in endothelial-dependent hyperpolarization (EDH). These physiological alterations modulate vascular contractility and cause marked vasodilation in resistance arteries. Transient receptor potential (TRP) channels are nonselective cation channels that are present in the endothelium, vascular smooth muscle cells, or perivascular/sensory nerves. TRP channels are activated by diverse stimuli and are considered key biological apparatuses for the Ca2+ influx-dependent regulation of vasomotor reactivity in resistance arteries. Ca2+-permeable TRP channels, which are primarily found at spatially restricted microdomains in endothelial cells (e.g., myoendothelial projections), have a large unitary or binary conductance and contribute to EDHFs or EDH-induced vasodilation in concert with the activation of intermediate/small conductance Ca2+-sensitive K+ channels. It is likely that endothelial TRP channel dysfunction is related to the dysregulation of endothelial Ca2+ signaling and in turn gives rise to vascular-related diseases such as hypertension. Thus, investigations on the role of Ca2+ dynamics via TRP channels in endothelial cells are required to further comprehend how vascular tone or perfusion pressure are regulated in normal and pathophysiological conditions.

Label-free Femtomolar Detection of Cancer Biomarker by Reduced Graphene Oxide Field-effect Transistor

  • Kim, Duck-Jin;Sohn, Il-Yung;Jung, Jin-Heak;Yoon, Ok-Ja;Lee, N.E.;Park, Joon-Shik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.549-549
    • /
    • 2012
  • Early detection of cancer biomarkers in the blood is of vital importance for reducing the mortality and morbidity in a number of cancers. From this point of view, immunosensors based on nanowire (NW) and carbon nanotube (CNT) field-effect transistors (FETs) that allow the ultra-sensitive, highly specific, and label-free electrical detection of biomarkers received much attention. Nevertheless 1D nano-FET biosensors showed high performance, several challenges remain to be resolved for the uncomplicated, reproducible, low-cost and high-throughput nanofabrication. Recently, two-dimensional (2D) graphene and reduced GO (RGO) nanosheets or films find widespread applications such as clean energy storage and conversion devices, optical detector, field-effect transistors, electromechanical resonators, and chemical & biological sensors. In particular, the graphene- and RGO-FETs devices are very promising for sensing applications because of advantages including large detection area, low noise level in solution, ease of fabrication, and the high sensitivity to ions and biomolecules comparable to 1D nano-FETs. Even though a limited number of biosensor applications including chemical vapor deposition (CVD) grown graphene film for DNA detection, single-layer graphene for protein detection and single-layer graphene or solution-processed RGO film for cell monitoring have been reported, development of facile fabrication methods and full understanding of sensing mechanism are still lacking. Furthermore, there have been no reports on demonstration of ultrasensitive electrical detection of a cancer biomarker using the graphene- or RGO-FET. Here we describe scalable and facile fabrication of reduced graphene oxide FET (RGO-FET) with the capability of label-free, ultrasensitive electrical detection of a cancer biomarker, prostate specific antigen/${\alpha}$ 1-antichymotrypsin (PSA-ACT) complex, in which the ultrathin RGO channel was formed by a uniform self-assembly of two-dimensional RGO nanosheets, and also we will discuss about the immunosensing mechanism.

  • PDF

Influence of Oxygen Partial Pressure on ZnO Thin Films for Thin Film Transistors

  • Kim, Jae-Won;Kim, Ji-Hong;Roh, Ji-Hyoung;Lee, Kyung-Joo;Moon, Sung-Joon;Do, Kang-Min;Park, Jae-Ho;Jo, Seul-Ki;Shin, Ju-Hong;Yer, In-Hyung;Koo, Sang-Mo;Moon, Byung-Moo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.106-106
    • /
    • 2011
  • Recently, zinc oxide (ZnO) thin films have attracted great attention as a promising candidate for various electronic applications such as transparent electrodes, thin film transistors, and optoelectronic devices. ZnO thin films have a wide band gap energy of 3.37 eV and transparency in visible region. Moreover, ZnO thin films can be deposited in a poly-crystalline form even at room temperature, extending the choice of substrates including even plastics. Therefore, it is possible to realize thin film transistors by using ZnO thin films as the active channel layer. In this work, we investigated influence of oxygen partial pressure on ZnO thin films and fabricated ZnO-based thin film transistors. ZnO thin films were deposited on glass substrates by using a pulsed laser deposition technique in various oxygen partial pressures from 20 to 100 mTorr at room temperature. X-ray diffraction (XRD), transmission line method (TLM), and UV-Vis spectroscopy were employed to study the structural, electrical, and optical properties of the ZnO thin films. As a result, 80 mTorr was optimal condition for active layer of thin film transistors, since the active layer of thin film transistors needs high resistivity to achieve low off-current and high on-off ratio. The fabricated ZnO-based thin film transistors operated in the enhancement mode with high field effect mobility and low threshold voltage.

  • PDF

Reduced Graphene Oxide Field Effect Transistor for Detection of H+ Ions and Their Bio-sensing Application

  • Sohn, Il-Yung;Kim, Duck-Jin;Yoon, Ok-Ja;Tien, N.T.;Trung, T.Q.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.195-195
    • /
    • 2012
  • Recently, graphene based solution-gated field-effect transistors (SGFETs) have been received a great attention in biochemical sensing applications. Graphene and reduced graphene oxide (RGO) possess various advantages such as high sensitivity, low detection limit, label-free electrical detection, and ease of fabrication due to their 2D nature and large sensing area compared to 1D nanomaterials- based nanobiosensors. Therefore, graphene or RGO -based SGFET is a good potential candidate for sensitive detection of protons (H+ ions) which can be applied as the transducer in various enzymatic or cell-based biosensing applications. However, reports on detection of H+ ions using graphene or RGO based SGFETs have been still limited. According to recent reports, clean graphene grown by CVD or exfoliation is electrochemically insensitive to changes of H+ concentration in solution because its surface does not have terminal functional groups that can sense the chemical potential change induced by varying surface charges of H+ on CVD graphene surface. In this work, we used RGO -SGFETs having oxygen-containing functional groups such as hydroxyl (OH) groups that effectively interact with H+ ions for expectation of increasing pH sensitivity. Additionally, we also investigate RGO based SGFETs for bio-sensing applications. Hydroloytic enzymes were introduced for sensing of biomolecular interaction on the surface of RGO -SGFET in which enzyme and substrate are acetylcholinesterase (AchE) and acetylcholine (Ach), respectively. The increase in H+ generated through enzymatic reaction of hydrolysis of Ach by AchE immobilized on RGO channel in SGFET could be monitored by the change in the drain-source current (Ids).

  • PDF

History and Current Situation of River Management using Physical Habitat Models in the U.S. and Japan

  • Sekine, Masahiko
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.1
    • /
    • pp.10-17
    • /
    • 2013
  • History of Instream Flow Incremental Methodology (IFIM) Following the large reservoir and water development era of the mid-twentieth century in North America, resource agencies became concerned over the loss of many miles of riverine fish and wildlife resources in the arid western United States. Consequently, several western states began issuing rules for protecting existing stream resources from future depletions caused by accelerated water development. Many assessment methods appeared during the 1960's and early 1970's. These techniques were based on hydrologic analysis of the water supply and hydraulic considerations of critical stream channel segments, coupled with empirical observations of habitat quality and an understanding of riverine fish ecology. Following enactment of the National Environmental Policy Act (NEPA) of 1970, attention was shifted from minimum flows to the evaluation of alternative designs and operations of federally funded water projects. Methods capable of quantifying the effect of incremental changes in stream flow to evaluate a series of possible alternative development schemes were needed. This need led to the development of habitat versus discharge functions developed from life stage-specific relations for selected species, that is, fish passage, spawning, and rearing habitat versus flow for trout or salmon. During the late 1970's and early 1980's, an era of small hydropower development began. Hundreds of proposed hydropower sites in the Pacific Northwest and New England regions of the United States came under intensive examination by state and federal fishery management interests. During this transition period from evaluating large federal reservoirs to evaluating license applications for small hydropower, the Instream Flow Incremental Methodology (IFIM) was developed under the guidance of the U.S. Fish and Wildlife Service (USFWS).

Contents Scheduling Method for Push-VOD over Terrestrial DTV using Markov-Chain Modeling and Dynamic Programming Approach (마르코프 연쇄 모델링과 동적 계획 기법을 이용한 지상파 DTV 채널에서의 Push-VOD의 콘텐츠 스케줄링 방법)

  • Kim, Yun-Hyoung;Lee, Dong-Jun;Kang, Dae-Kap
    • Journal of Broadcast Engineering
    • /
    • v.15 no.4
    • /
    • pp.555-562
    • /
    • 2010
  • After starting digital terrestrial broadcasting, there have been a number oftrials to provide new services like data broadcasting on a spare bandwidth of a DTV channel. Recently, the Push-VOD service, which provides A/V contents on that bandwidth, gets more attention and is being standardized as NRT(Non-Real-Time) by ATSC. However, it is highly probable that the contents transmitted in this way contain many errors due to the DTV receiving environment. Thus, in order to improve the reliability of transmission, the contents should be transmitted repeatedly several times, considering the unidirectional property of DTV terrestrial network. In this paper, we propose a method to calculate the optimal number of repetitions to transmit each contents in a way that minimizes the number of errors occured, when trying to transmit several contents to the receiver in a restricted time, using Markov-chain modeling and dynamic programming approach.

A Rapid Convergent Max-SINR Algorithm for Interference Alignment Based on Principle Direction Search

  • Wu, Zhilu;Jiang, Lihui;Ren, Guanghui;Wang, Gangyi;Zhao, Nan;Zhao, Yaqin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.5
    • /
    • pp.1768-1789
    • /
    • 2015
  • The maximal signal-to-interference-plus-noise ratio (Max-SINR) algorithm for interference alignment (IA) has received considerable attention for its high sum rate achievement in the multiple-input multiple-output (MIMO) interference channel. However, its complexity may increase dramatically when the number of users approaches the IA feasibility bound, and the number of iterations and computational time may become unacceptable. In this paper, we study the properties of the Max-SINR algorithm thoroughly by presenting theoretical insight into the algorithm and by providing the potential of reducing the overall computational cost. Furthermore, a novel IA algorithm based on the principle direction search is proposed, which can converge more rapidly than the conventional Max-SINR method. In the proposed algorithm, it searches along the principle direction, which is found to approximately point to the convergence values, and can approach the convergence solutions rapidly. In addition, the closed-form solution of the optimal step size can be formulated in the sense of minimal interference leakage. Simulation results demonstrate that the proposed algorithm outperforms the conventional minimal interference leakage and Max-SINR algorithms in terms of the convergence rate while guaranteeing the high throughput of IA networks.