• Title/Summary/Keyword: channel aging

Search Result 42, Processing Time 0.031 seconds

Inductive Effects of the Cold Receptor TRPM8 Expression in Ganoderma lucidum Extracts and Ergosterol (영지버섯추출물 및 에르고스테롤의 냉감 수용체 TRPM8 (Transient Receptor Potential Cation Channel Melastatin Subtype 8) 발현 유도 효과)

  • Ryu, Hwa Sun;Jeong, JiYeon;Jeon, Weon-Ok;Lee, Chun Mong;Lee, Jung-No;Park, Sung-Min
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.1
    • /
    • pp.15-21
    • /
    • 2018
  • Skin-aging is accelerated by the increased expression of MMP-1 caused by the increased skin temperature induced by IR/visible light as well as UV. Thus, the control of skin temperature is important to inhibit heat-induced aging. Many studies have been conducted to lower the skin temperature through the controlling transient receptor potential melastatin 8 channel (TRPM8), which is known as the cold and menthol receptor 1 (CMR1) and is activated at temperature below $25^{\circ}C$. In this study, we first investigated the effect of Ganoderma lucidum extract (GLE) on the TRPM8 expression. Results showed that GLE, hexane (Hex) fractions and water fractions increased the TRPM8 expression in a dose dependent manner. Active compound in Hex fractions were separated by chromatography and analyzed by $^1H$ and $^{13}C$ NMR spectroscopy. The isolated compounds were identified as ergosterol and it also significantly increased the TRPM8 expression. Taken together, these results strongly suggest that G. lucidum extract and ergosterol have the potential as a new cooling ingredient in the cosmetics.

A Study on the Aging Behavior of Ship Organic Coating by the Flow Induced Shear Stress (유동 전단응력에 의한 선박 유기도막의 열화거동 연구)

  • Park Hyun;Park Jin-Hwan;Ha Hyo-Min;Chun H.H.;Lee In-Won
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.1 s.24
    • /
    • pp.9-14
    • /
    • 2006
  • Analysis has been made of the anti-corrosive property of organic coating under the shear stress of the flow by means of AC impedance method. Marine anti-corrosive painted panels were placed in the water channel with varying flow rate, thereby experiencing varying flow shear stress on the surfaces. The velocities of the salt water were ranged from 1.48 to 5.2 m/s and the coating thickness of from $70{\mu}m\;to\;140{\mu}m$. For all coating thicknesses investigated, the poorer anti-corrosive property and the lower adhesion strength have been found for the higher shear stress. It has been found that the shear stress accelerates the aging of organic marine coatings.

  • PDF

Development of an UV Distribution Model for the Design of a Submerged UV Disinfection Reactor and Its Application (침지형 자외선 살균조 설계를 위한 자외선 분포 모델의 개발 및 적용)

  • Park, Changyeun;Kim, Sunghong;Choi, Younggyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.5
    • /
    • pp.505-512
    • /
    • 2021
  • A 3D model was developed to calculate the UV intensity of a submerged-type UV disinfection reactor. Numerical experiments were conducted by inputting the design factors of an open channel-type disinfection reactor and a pipe-type disinfection reactor that were installed in an actual sewage treatment plant. The following data were obtained: The average UV intensity of the installed open channel-type reactor and pipe-type reactor was 7.87 mW/cm2 and 13.09 mW/cm2, respectively; the UV dose reflecting the UV irradiation time and taking into account attenuation effects such as mixing imbalance, lamp aging, temperature, and fouling, was expected to be 21.1 mJ/cm2 and 24.8 mJ/cm2, respectively, and these values are 5 % and 24 % higher than the target UV dose of 20 mJ/cm2, respectively. By using the UV3D model, the optimal lamp position, which maximizes the average UV intensity without changing the size of the disinfection reactor or lamp output power, can be found. In this case, by only adjusting the lamp position, the average UV intensity can be increased by 0.9 % for the open channel-type and 0.5 % for the pipe-type, respectively. A better average UV intensity can be obtained by model simulation. By adjusting the horizontal and vertical ratio of the open channel-type reactor and by moving the lamp position, the average UV intensity can be increased by 7.4 % more than the present case.

A Colorimetric Glucose Assay via Concentration Gradient Paper Chip (종이기반 농도 구배 형성 칩을 통한 포도당 발색 반응 검사)

  • Kim, Taehoon H.;Shin, Hyun Young;Lee, Yun-Il;Tae, Ki-Sik;Kim, Minseok S.
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.302-307
    • /
    • 2017
  • This paper presents a paper-based concentration gradient chip to analyze colorimetric glucose assay. The paper-based concentration gradient chip was fabricated through a wax patterning technique that can design the fluidic channel by selectively printing hydrophobic and hydrophilic areas. Afterwards, glucose and dilution solutions were loaded into the inlet of a concentration gradient chip and each solution was then mixed sequentially at mixing channel. Finally, concentration gradient was formed at each outlet of the chip. To measure the glucose concentration of the solution in outlets, we conducted colorimetric glucose assay with fixed concentration of glucose solution (0, 5, 10, 15 and 20 mM) and obtained normalized intensity. Subsequently, glucose concentrations of the outlets were calculated by substituting the normalized intensity to linear regression function based on the normalized intensity of fixed glucose concentration. Finally, the concentration gradient of glucose was formed on the chip with the result of colorimetric assay. The concentration gradient paper chip has the potential to accurately analyze unknown glucose concentration.

DIAMETRAL CREEP PREDICTION OF THE PRESSURE TUBES IN CANDU REACTORS USING A BUNDLE POSITION-WISE LINEAR MODEL

  • Lee, Sung-Han;Kim, Dong-Su;Lee, Sim-Won;No, Young-Gyu;Na, Man-Gyun;Lee, Jae-Yong;Kim, Dong-Hoon;Jang, Chang-Heui
    • Nuclear Engineering and Technology
    • /
    • v.43 no.3
    • /
    • pp.301-308
    • /
    • 2011
  • The diametral creep of pressure tubes (PTs) in CANDU (CANada Deuterium Uranium) reactors is one of the principal aging mechanisms governing the heat transfer and hydraulic degradation of the heat transport system (HTS). PT diametral creep leads to diametral expansion, which affects the thermal hydraulic characteristics of the coolant channels and the critical heat flux (CHF). The CHF is a major parameter determining the critical channel power (CCP), which is used in the trip setpoint calculations of regional overpower protection (ROP) systems. Therefore, it is essential to predict PT diametral creep in CANDU reactors. PT diametral creep is caused mainly by fast neutron irradiation, temperature and applied stress. The objective of this study was to develop a bundle position-wise linear model (BPLM) to predict PT diametral creep employing previously measured PT diameters and HTS operating conditions. The linear model was optimized using a genetic algorithm and was devised based on a bundle position because it is expected that each bundle position in a PT channel has inherent characteristics. The proposed BPLM for predicting PT diametral creep was confirmed using the operating data of the Wolsung nuclear power plant in Korea. The linear model was able to predict PT diametral creep accurately.

Store-operated Ca2+ entry in muscle physiology and diseases

  • Pan, Zui;Brotto, Marco;Ma, Jianjie
    • BMB Reports
    • /
    • v.47 no.2
    • /
    • pp.69-79
    • /
    • 2014
  • $Ca^{2+}$ release from intracellular stores and influx from extracellular reservoir regulate a wide range of physiological functions including muscle contraction and rhythmic heartbeat. One of the most ubiquitous pathways involved in controlled $Ca^{2+}$ influx into cells is store-operated $Ca^{2+}$ entry (SOCE), which is activated by the reduction of $Ca^{2+}$ concentration in the lumen of endoplasmic or sarcoplasmic reticulum (ER/SR). Although SOCE is pronounced in non-excitable cells, accumulating evidences highlight its presence and important roles in skeletal muscle and heart. Recent discovery of STIM proteins as ER/SR $Ca^{2+}$ sensors and Orai proteins as $Ca^{2+}$ channel pore forming unit expedited the mechanistic understanding of this pathway. This review focuses on current advances of SOCE components, regulation and physiologic and pathophysiologic roles in muscles. The specific property and the dysfunction of this pathway in muscle diseases, and new directions for future research in this rapidly growing field are discussed.

Low Cycle Fatigue and Serration Behavior of Plastically Deformed and Annealed 5052 Al Alloy (5052 Al 합금의 소성가공 및 열처리에 따른 피로거동 및 serration의 변화)

  • Cha, J.H.;Kwun, S.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.3
    • /
    • pp.131-136
    • /
    • 2010
  • The LCF (low cycle fatigue) behavior and the serration phenomena in the plastically deformed and non-deformed 5052 Al alloy were investigated. The plastic deformation was performed by 1 pass or 4 passes in ECAP (equal channel angular pressing) followed by annealing. Only cyclic hardening continued from the beginning until fracture at all strain amplitudes during LCF in the non-deformed alloy, which was caused by the increase in dislocation density during fatigue. Slight cyclic hardening followed by plateau until fracture was observed during LCF in the ECAPed alloy, which was caused by the slight increase in dislocation density in the beginning and then keeping constant in dislocation density afterward until fracture by forming subgrains in this stage of fatigue. The serrations on the stress-strain curves of this alloy were observed, which indicate that the dynamic strain aging (DSA) is occurring during plastic deformation. The variation in amplitudes of serration was studied by changing the strain rate in tensile or fatigue tests.

Electrochemical Characteristics of Marine Anti-Corrosive Coating under Shear Flows (전단유동 하에서의 선박용 방식도막의 전기화학 특성)

  • Park, Hyun;Park, Jin-Hwan;Ha, Hyo-Min;Chun, Ho-Hwan;Lee, In-Won
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.2 s.146
    • /
    • pp.268-274
    • /
    • 2006
  • Analysis has been made of the anti-corrosive property of organic coating under the shear stress of the flow by means of AC impedance method. Marine anti-corrosive painted panels were placed in the water channel with varying flow rate, thereby experiencing varying flow shear stress on the surfaces. The velocities of the salt water were ranged from 1.48 to 5.2 m/s and the coating thickness of from $70{\mu}m\;to\;140{\mu}m$. For all coating thicknesses investigated, the poorer anti-corrosive property and the lower adhesion strength have been found for the higher shear stress. It has been found that the shear stress accelerates the aging of organic marine coatings.

Compatibility Study between 316-series Stainless Steel and Sodium Coolant (316계 스테인리스강과 소듐 냉각재와의 양립성 연구)

  • Kim, Jung Hwan;Kim, Jong Man;Cha, Jae Eun;Kim, Sung Ho;Lee, Chan Bock
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.5
    • /
    • pp.410-416
    • /
    • 2010
  • Studies were carried out to establish the technology for sodium-clad compatibility and to analyze the compatibility behavior of the Sodium-cooled Fast Reactor (SFR) cladding material under a flowing sodium environment. The natural circulation facility caused by the thermal convection of the liquid sodium was constructed and the 316-series stainless steels were exposed at $650{^{\circ}C}$ liquid sodium for 1458 hours. The weight change and related microstructural change were analyzed. The results showed that the quasi-dynamic facility represented by the natural convection exhibited similar results compared to the conventional dynamic facility. Selective leaching and local depletion of the chromium, re-distribution of the carbide, and the decarburization process took place in the 316-series stainless steel under a flowing sodium environment. This process decreased as the sodium flowed along the channel, which was caused by the change in the dissolved oxygen and carbon activity in the liquid sodium.

Multichannel Convolution Neural Network Classification for the Detection of Histological Pattern in Prostate Biopsy Images

  • Bhattacharjee, Subrata;Prakash, Deekshitha;Kim, Cho-Hee;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.12
    • /
    • pp.1486-1495
    • /
    • 2020
  • The analysis of digital microscopy images plays a vital role in computer-aided diagnosis (CAD) and prognosis. The main purpose of this paper is to develop a machine learning technique to predict the histological grades in prostate biopsy. To perform a multiclass classification, an AI-based deep learning algorithm, a multichannel convolutional neural network (MCCNN) was developed by connecting layers with artificial neurons inspired by the human brain system. The histological grades that were used for the analysis are benign, grade 3, grade 4, and grade 5. The proposed approach aims to classify multiple patterns of images extracted from the whole slide image (WSI) of a prostate biopsy based on the Gleason grading system. The Multichannel Convolution Neural Network (MCCNN) model takes three input channels (Red, Green, and Blue) to extract the computational features from each channel and concatenate them for multiclass classification. Stain normalization was carried out for each histological grade to standardize the intensity and contrast level in the image. The proposed model has been trained, validated, and tested with the histopathological images and has achieved an average accuracy of 96.4%, 94.6%, and 95.1%, respectively.