• 제목/요약/키워드: changing pressure

검색결과 969건 처리시간 0.036초

대기압 플라즈마로 처리된 폴리프로필렌 필름의 표면 자유에너지 변화 (Surface Free Energy Change of Polypropylene Film treated by Atmospheric Pressure Plasma)

  • 권오준;탕쉰;루나;최호석
    • 접착 및 계면
    • /
    • 제4권4호
    • /
    • pp.1-6
    • /
    • 2003
  • 대기압 플라즈마를 이용하여 폴리프로필렌 필름의 표면을 처리한 후 각각 극성 용매(water)와 비극성 용매(diiodomethane)를 사용한 접촉각 측정기로 필름 표면의 접촉각을 측정하였다. 측정된 접촉각을 이용해 표면 자유에너지 변화를 계산한 후 대기압 플라즈마 처리 전후의 폴리프로필렌 필름의 접촉각과 표면 자유에너지 상태를 비교, 분석하였다. 또한 대기압 플라즈마의 처리 조건을 바꿔가며 폴리프로필렌 필름 표면을 처리함으로써 접촉각과 표면 자유에너지가 각각의 처리 조건에 따라 어떠한 영향을 받는지 연구하였다. 대기압 플라즈마 처리 조건에 따라 접촉각 및 표면 자유에너지는 최적값을 보여주거나 일정한 값에 도달하는 경향을 보여 주었다.

  • PDF

주방환기용 그리스 필터의 형상설계에 관한 수치해석 (A Numerical Study on the Design of a Grease Filter for Kitchen Ventilation)

  • 김기정;배귀남;김영일;허남건
    • 설비공학논문집
    • /
    • 제15권8호
    • /
    • pp.619-629
    • /
    • 2003
  • A grease filter is used to remove grease generated from a cooking appliance in a kitchen. Since the inertial impaction is a dominant particle removal mechanism of the grease filter, the performance of the filter is greatly affected by the geometry. This numerical study has been conducted to investigate the effect of geometry on the performance of grease filters for four models having nominal flowrate of 100 m$^3$/h. Four models were designed by changing the shape of impaction surface, the length of eyelid, and the number of eyelids of the grease filter. The flow field and particle trajectories in the grease filter with a flow chamber were simulated using the commercial code of STAR-CD. The difference of air velocity and pressure distributions among four models was discussed in detail. The collection efficiency curves and the pressure drops of four models were also compared. It was found that the grease filter model with flat top surfaces shows highest performance among four models, having high particle collection efficiency and relatively low pressure drop. The cutoff diameter of this model representing 50-% collection efficiency is about 7.1 ${\mu}{\textrm}{m}$ for water droplets at 100 m$^3$/h.

핀틀 변곡 각도에 따른 E-D 노즐 특성에 대한 전산수치해석 연구 (Numerical Study on an E-D Nozzle Characteristics with Various Pintle Inflection Angles)

  • 박상현;문태석;허환일
    • 한국추진공학회지
    • /
    • 제22권6호
    • /
    • pp.19-27
    • /
    • 2018
  • 본 논문에서는 E-D 노즐 공압 실험 연구의 선행 연구로써, 노즐 압력비에 따라 변화하는 E-D 노즐특성 파악을 위한 해석적 연구가 수행되었다. 설계 변수 중, 핀틀 변곡 각도를 하나의 변수로 하여 서로 다른 세 가지 수치해석 모델을 설계하였다. 노즐 압력비가 낮을 때는 E-D 노즐 내부로 외부 대기가 유입되어 개방 유동장이 형성되었다. 노즐 압력비가 높아짐에 따라 노즐 내부에 재순환 영역이 고립되는 폐쇄 유동장으로 유동 천이가 발생함을 확인하였다. 또한, 전체 노즐 압력비 구간에서 핀틀 변곡 각도가 높은 해석 모델에서 가장 높은 추력 계수가 도출되었다.

타원형 돔 지붕의 변동풍압특성 (Fluctuating Pressure Coefficients Distributions for Elliptical Dome Roof)

  • 이종호;천동진;김용철;박상우;윤성원
    • 한국공간구조학회논문집
    • /
    • 제20권4호
    • /
    • pp.63-71
    • /
    • 2020
  • The fluctuating wind pressure of the low rise ratio(f/D=0.1) for the elliptical dome roof was analyzed to compare it with the previous studies of circular dome roofs. Wind tunnel test were conducted on a total of 10 wind directions from 0° to 90° while changing wall height-span ratios(H/D=0.1-0.5). For this, meanCP, rmsCP and wind pressure spectrum were analyzed. The analysis result leads to find differences in the shape of the spectra in the spanwise direction and leeward of the elliptical dome according to the wind direction variations of the elliptical dome roof.

Plasma Jet의 동축평행자계에 의한 영향에 관한 연구 2 (A Study on the Influence Coaxial Parallel Magnetic Field upon Plasma Jet (II))

  • 전춘생
    • 전기의세계
    • /
    • 제22권5호
    • /
    • pp.19-32
    • /
    • 1973
  • This paper treats with some of plasma jet behaviors under magnetic field for the purpose of controlling important characteristics of plasma jet in the practices of material manufacturings. Under the existence and non-existence of magnetic field, the pressure distribution, flame length, stability and noise of plasma jet are comparatively evaluated in respect of such parameters as are current, gap of electrode, quantity of argon flow, magnetic flux density, diameter and length of nozzle. The results are as follows: 1) the pressure, the length and the noise of plasma jet rise gradually with the increase of are current, and have high values under identical arc current as the diameter of nozzle increases, but reverse phenomenon tends to appear in the noise. 2) The pressure, the flame length and the noise increase with the increased quantity of argon flow, and the rising slope of noise is particularly steep. Under magnetic field, the quantity of argon flow in respect of flame length has the critical value of 80(cfh). 3) The pressure and length of flame decrease with small gradient value as the length of gap increases, but the noise tends to grow according to the increase of nozzle diameter. 4) The pressure and the length of jet flame decrease inversly with the increase of magnetic flux density, which have one critical value in the 100 amps of arc current and two values in 50 amps. The pressure of jet flame can be below atomospher pressure in strong magnetic field. 5) "The constriction length of nozzle has respectively the critical value of 6(mm) for pressure and 23(mm) for the length of flame. 6) Fluctuations in the wave form of voltage become greater with the increase of argon flow and magnetic flux density, but tends to decrease as arc current increases, having the frequency range of 3-8KHz. The wave form of noise changes almost in parallel with that of voltage and its changing value increases with argon flow, arc current and magnetic flux density, having the freuqency range of 6-8KHz. The fluctuation of jet presurre is reduced with the increase of argon flow and magnetic flux density and grows with arc current.rent.

  • PDF

The Effect of Application Parameter of Pulsed Direct Current on Wound Healing of Patients with Pressure Ulcer

  • Kim, Ga Yeong;Lee, Sang Bin;Moon, Ok Kon;Kim, Ji Sung;Choi, Jung Hyun;Wang, Jung San;Park, Joo Hyun;Kim, Hong Rae;Lee, Ju Hwan;Min, Kyung Ok
    • 국제물리치료학회지
    • /
    • 제5권2호
    • /
    • pp.752-756
    • /
    • 2014
  • This study investigated the effects of changes to the pulsation factor of pulsed direct currents on wound healing. Patients with a pressure ulcer at a care hospital for the elderly were randomly divided into three groups: Group 1 involved the application of $100{\mu}s$ in pulse duration, 10 ms in pulse period, 100 pps in a pulsation factor, 15 mA in pulse amplitude, and polarity red+ by using pulsed direct currents; Group 2 involved a change of pulse period to 8 ms; and Group 3 received general wound management. Although there were no statistically significant differences in the changing stages of pressure ulcers among the groups, all the groups dropped in numerical stages. In the two groups to which pulsed direct currents were applied, there was a statistically significant reduction in the stages of pressure ulcers from the initial assessment to the 12-week assessment (p<.05). Even though there were no statistically significant differences in changes to the area of pressure ulcers among the groups, a statistically significant decrease was found in pulsed direct current group 2 whose pulse period was shortened (p<.05). There was no difference in the healing rate of pressure ulcers among the groups, but it made a numerical increase in pulsed direct current group 1 and group 2 and a numerical decrease in group 3. There were no significant differences in the characteristics of those who had a full recovery among the groups. Those findings indicate that pulsed direct currents have positive effects on the wound healing of patients with a pressure ulcer and that a treatment with pulsed direct currents whose pulsation factor is raised by reducing the pulse duration is especially effective.

Technology to reduce water ingress for TBM cutterhead intervention

  • Ham, Soo-Kwon;kim, Beom-Ju;Lee, Seok-Won
    • Geomechanics and Engineering
    • /
    • 제29권3호
    • /
    • pp.321-329
    • /
    • 2022
  • Tunnel site where high water pressure is applied, such as subsea tunnel, generally selects the shield TBM (Tunnel Boring Machine) to maintain the tunnel excavation face. The shield TBM has cutters installed, and the cutters wear out during the process of excavation, so it should be checked and replaced regularly. This is called CHI (Cutterhead Intervention). The conventional CHI under high water pressure is very disadvantageous in terms of safety and economics because humans perform work in response to high water pressure and huge water inflow in the chamber. To overcome this disadvantage, this study proposes a new method to dramatically reduce water pressure and water ingress by injecting an appropriate grout solution into the front of the tunnel face through the shield TBM chamber, called New Face Grouting Method (NFGM). The tunnel model tests were performed to determine the characteristics, injection volume, and curing time of grout solution to be applied to the NFGM. Model test apparatus was composed of a pressure soil tank, a model shield TBM, a grout tank, and an air compressor to measure the amount of water inflow into the chamber. The model tests were conducted by changing the injection amount of the grout solution, the curing time after the grout injection, and the water/cement ratio of grout solution. From an economic point of view, the results showed that the injection volume of 1.0 L, curing time of 6 hours, and water/cement ratio of the grout solution between 1.5 and 2.0 are the most economical. It can be concluded that this study has presented a method to economically perform the CHI under the high water pressure.

개심술을 받은 환자의 체위에 따른 심박출량 및 불편감에 관한 연구 (Effects of changing position on cardiac output & on patient's discomforts after cardiac surgery)

  • 유미;권은옥;최윤경;강현주;오세은
    • 기본간호학회지
    • /
    • 제7권2호
    • /
    • pp.256-270
    • /
    • 2000
  • Invasive hemodynamic monitoring has become a valuable assessment parameters in critical care nursing in patients undergoing open heart surgery patients. During cardiac surgery, the Swan Ganz catheter is placed in the pulmonary artery. Critical care nurses routinely obtain cardiac output, cardiac index, and pulmonary arterial pressure in these patients. Traditionally, patients are positioned flat and supine for cardiac output measurement. Numerous studies have dealt with the effects of changing position on the hemodynamic variables. However, there are a few studies dealing with patients who undergo cardiac surgery in Korea. Thus, the purpose of this study was to determine the effects of changing position on cardiac output, PAP, CVP, BP, HR and discomfort in patients after cardiac surgery. A sample of 21 adults who had CABG and/or valve replacement with Swan Ganz catheters in place was studied. The data were collected in the cardiac ICU of a university hospital in Seoul during the period from July 28, 1999 to August 30. 1999. In this study, the independent variable is patient position in the supine, 30 degree, and 45 degree angles. Dependent variables are C.O., C.I., CVP, PAP, MAP, HR and patients' perceived discomforts. Subject discomfort was measured subjectively by visual analogue scale. Other hemodynamic data where collected by the thermodilution method and by direct measurement. The data were analyzed by percentile, t-test, ANOVA, Linear regression analysis using SPSS-/WIN program. The results are as follows : 1) Changes in cardiac output were absent in different angle positions, 0, 30. 45 degrees(F=.070, P=.932). Changes in cardiac index were absent in different angle positions, 0. 30, 45 degrees(P>.05). 2) Changes in central venous pressure were absent in different angle positions, 0, 30, 45 degree(P>.05). 3) PAP had no change in different angle 0, 30, 45 degree positions; systolic PAP(P>.05), diastolic PAP(P>.05). 4) Changes in systolic blood pressure were absent in different angle positions, 0, 30, 45 degree(P>.05). 5) Changes in heart rates were absent in different angle positions, 0, 30, 45 degree(P>.05). 6) Patients' perceived discomfort was absent in different angle positions, 0, 30, 45 degree(p<.05). In conclusion, critical care nurses can measure C.O., C.I., PAP, BP, & CVP in cardiac surgery patients at 30 degree or 45 degree positions. This can improve the patients' comfort.

  • PDF

삼축압력하에서의 미고결 시료의 물성측정을 위한 측정 장치와 물성 연구 (The Measurement System and Physical Property of Unconsolidated Sample under Trinxial Pressure)

  • 배위섭;정태문;권영인;김현태
    • 한국지구과학회지
    • /
    • 제28권7호
    • /
    • pp.838-846
    • /
    • 2007
  • 미고결, 난투수층 퇴적층 시료의 투수계수와 전기비저항의 측정이 가능한 삼축압력 측정장치를 설계하고 제작하였다. 이 측정장치는 측정셀 전후에 입출력 유량측정시스템이 설치되어 시료의 봉압을 증가시키면서 투수계수와 전기비저항을 동시에 측정할 수 있다. 아치의 법칙과 실험전후의 시료 질량 변화와 부피를 이용하여 공극률을 측정할 수 있다. 실험을 위한 시료는 표준모래와 일라이트 진흙을 성분비율을 다양하게 혼합한 인공시료와 동해 울릉분지에서 채취한 현장시료를 사용하였다. 이들 시료들에 대한 투수계수, 전기비저항을 봉압이 증가함에 따라 측정하고 분석하였다. 봉합이 증가함에 따라서 투수계수와 공극률은 지수적으로 감소하고 전기비저항은 지수적으로 증가한다.

75톤급 재생냉각 연소기 기술검증시제 연료 수류시험 및 차압 해석 (Fuel-Side Cold-Flow Test and Pressure Drop Analysis on Technology Demonstration Model of 75 ton-class Regeneratively-Cooled Combustion Chamber)

  • 안규복;김종규;임병직;김문기;강동혁;김성구;최환석
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.807-812
    • /
    • 2011
  • 한국형발사체 1단에 사용될 75톤급 액체로켓엔진 연소기의 기술검증시제를 설계, 제작하여 연료수류시험을 수행하였다. 가압압력을 조절하여 연료 유량을 변경함으로써 주어진 유량에서 발생하는 연소기 재생냉각 채널에서의 압력 손실을 측정하였다. 연소실 각 부에서의 압력 손실을 측정할 수 있었으며, 상당량의 압력 손실이 유속이 강한 연소실 노즐목부에서 발생함을 확인하였다. 주어진 연료 수류시험 조건에서 수력학 해석을 통하여 수력학 해석 방법의 정확도를 검증할 수 있었다.

  • PDF