• Title/Summary/Keyword: changes of communities

Search Result 591, Processing Time 0.03 seconds

Distribution and Cyclings of Nutrients in Phragmites communis Communities of a Coastal Salt Marsh (해안염습지 갈대 군락의 무기영양소 순환과 분배)

  • 민병미
    • Journal of Plant Biology
    • /
    • v.26 no.1
    • /
    • pp.17-32
    • /
    • 1983
  • The aboveground production, nutrient distribution and nutrient cyclings were compared between two Phragmites communis communities growing in the different salt contents of soil in a coastal salt marsh. Inorganic nutrient contents of soil for plant growth were greater at the low salt stand than at the high salt stand except for sodium(Na). Maximum aboveground biomass of the plant at the low and the high salt stands were 2,533 and 1,719 g dw/$m^2$, respectively, in August. Seasonal changes of nutrient content of biomass in dry weight decreased with growth except for Na. Nutrient contents in biomass per unit land area increased continuously as biomass increases, although the amount of potassium(K) reached the maximum content in July and thereafter decreased. Vertical distributions of total nitrogen(T-N) and phosphorus(P) increased with plant height, but Na showed the reverse trend. That of K was similar to the patterns for T-N and P in the leaves, and to the pattern of Na in the stems. The Na was greatly accumulated in underground biomass but transported scarcely to aboveground. At the low and the high salt stands, the ratios of the inorganic nutrients contained in the plant were 100 : 66 for T-N, 100 : 61 for P, 100 : 62 for K and 100 : 97 for Na. the ratios of the amounts of nutrients retrieved to soil were 100 : 242 for T-N, 100 : 408 for P, 100 : 127 for K and 100 : 269 for Na, respectively. Turnover times of the T-N, P, K and Na in the communities were 56, 1, 15 and 174 years at the low salt stand, and 75, 2, 24 and 323 years at the high salt stand, respectively. In nutrient cyclings, all of the nutrients retrieving to soil were less than uptake by plant. Among the nutrient, especially P is expected to be exhausted from soil, sooner or later, because of the harvest by men.

  • PDF

Pyrosequencing and Taxonomic Composition of the Fungal Community from Soil of Tricholoma matsutake in Gyeongju

  • Jeong, Minji;Choi, Doo-Ho;Cheon, Woo-Jae;Kim, Jong-Guk
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.5
    • /
    • pp.686-695
    • /
    • 2021
  • Tricholoma matsutake is an ectomycorrhizal fungus that has a symbiotic relationship with the root of Pinus densiflora. Soil microbial communities greatly affect the growth of T. matsutake, however, few studies have examined the characteristics of these communities. In the present study, we analyzed soil fungal communities from Gyeongju and Yeongdeok using metagenomic pyrosequencing to investigate differences in fungal species diversity, richness, and taxonomic composition between the soil under T. matsutake fruiting bodies (Sample 2) and soil where the fairy ring of T. matsutake was no longer present (Sample 1). The same spot was investigated three times at intervals of four months to observe changes in the community. In the samples from Yeongdeok, the number of valid reads was lower than that at Gyeongju. The operational taxonomic units of most Sample 2 groups were less than those of Sample 1 groups, indicating that fungal diversity was low in the T. matsutake-dominant soil. The soil under the T. matsutake fruiting bodies was dominated by more than 51% T. matsutake. From fall to the following spring, the ratio of T. matsutake decreased. Basidiomycota was the dominant phylum in most samples. G-F1-2, G-F2-2, and Y-F1-2 had the genera Tricholoma, Umbelopsis, Oidiodendron, Sagenomella, Cladophialophora, and Phialocephala in common. G-F1-1, G-F2-1, and Y-F1-1 had 10 genera including Umbelopsis and Sagenomella in common. From fall to the following spring, the amount of phyla Basidiomycota and Mucoromycota gradually decreased but that of phylum Ascomycota increased. We suggest that the genus Umbelopsis is positively related to T. matsutake.

Structure of Epiphytic Diatom Communities at the Banwoul High and Low Wetlands in the Shiwha Constructed Wetland (시화 반월 고습지와 저습지의 갈대 부착규조 군집 구조)

  • Kim, Yong-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.1
    • /
    • pp.95-106
    • /
    • 2009
  • The Shihwa constructed wetland was established for the treatment of severely poluted water from Banwoul, Donghwa and Samhwa streams. This study was focused on investigating the structure of epiphytic diatom communities on reed (Phragmites communis) planting area at Banwoul high wetland (3 stations) and low wetland (3 stations) from March to October 2005. The concentration of T-N of inlet stations from the streams were decreased by flowed through the wetland, but the concentration of T-P were increased at outflow part. Epiphytic diatoms on the reed were a total 109 taxa which were composed of 103 species, 5 varieties, 1 unidentified species. The standing crops were rapidly decreasing tendency from spring to autumn but chlorophyll-a concentration were showed a very irregulated changes. Dominant species were 6 taxa which were Achnanthes minutissima in the early investigation, and were changed to the genus Navicula and the genus Nitzschia in the summer. DAIpo were ranged the values of $20.2{\sim}51$, which were mesosaprobic states at the high wetland and ranged the values of $12.4{\sim}52$, which were polysaprobic to mesosaprobic states at the low wetland. TDI were ranged the values of $28.8{\sim}94.5$, which were oligotrophic to eutrophic state at the high wetland and ranged the values of $33.3{\sim}89.7$ which were mesotrophic to eutrophic states at the low wetland. The healthy assessment (DAIpo and TDI) of water ecosystem were showed clean-bad from spring to autumn. These epiphytic diatom communities were determinated by the biological factor such as the growth of reed and the physical factors such as water temperature, light penetration and SS and so on.

Phytoplankton Ecosystems at Oil Spill Coasts Including the Hebei Spirit Oil Spill Site Near Taeanhaean National Park, Korea 1. Interannual Variability of Phytoplankton Community in Summer (태안해안국립공원 인근의 허베이스피리트 사고를 포함한 유류유출 해역의 식물플랑크톤 생태계 1. 하계 식물플랑크톤 군집의 연변동)

  • Yih, Wonho;Kim, Hyung Seop;Jo, Soo-Gun
    • Ocean and Polar Research
    • /
    • v.41 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • Right after the 2007 Hebei Spirit Oil Spill phytoplankton ecosystems were investigated for 11 years based on the seasonal monitoring of the composition and abundance of phytoplankton species. Comparable time-series data from the 1989 Exxon Valdez or the 2010 Deepwater Horizon Oil Spill sites were not available. It was suggested that the ecological healthiness of phytoplankton ecosystems at EVOS sites had recovered after 10 years following the oil spill based on chlorophyll concentrations even though these concentrations only represented phytoplankton communities in most cases. Chlorophyll concentrations can only reflect limited aspects of highly complex phytoplankton ecosystems. During the last 11 years following the 2017 HSOS, extreme variabilities were met in the seasonally averaged ratios of diatoms to phototrophic flagellates including dinoflagellates based on the microscopic cell countings. Summer phytoplankton communities exhibited some cyclic interannual changes in dominant groups every 2-4 years. During the early years (2008-2010) cryptophytes or raphidophytes (Chattonella spp.) dominated alternately each year, which was repeated again in 2014, 2015 and 2017. Two thecate dinoflagellates, Tripos fusus and Tripos furca, together accounted for 52.5% and 50.0% of all organisms in the summers of 2011 and 2012, respectively, which was repeated again in 2018. Summer occurrence and dominance by the phototrophic flagellates including HABs (Harmful Algal Blooms) species as well as their interannual variabilities in the oil spill sites could be utilized as markers for the stable and long-term management of healthy ecosystems. For this type of scientific ecosystem management monitoring of chlorophyll concentrations may sometimes be insufficient to gain a proper and comprehensive understanding of phytoplankton communities located in areas where oil spills have occurred and harmed the ecosystem.

Long-term Effects on Forest Biomass under Climate Change Scenarios Using LANDIS-II - A case study on Yoengdong-gun in Chungcheongbuk-do, Korea - (산림경관천이모델(LANDIS-II)를 이용한 기후변화 시나리오에 따른 산림의 생물량 장기변화 추정 연구 -충청북도 영동군 학산면 봉소리 일대 산림을 중심으로 -)

  • Choi, Young-Eun;Choi, Jae-Yong;Kim, Whee-Moon;Kim, Seoung-Yeal;Song, Won-Kyong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.5
    • /
    • pp.27-43
    • /
    • 2019
  • This study applied the LANDIS-II model to the forest vegetation of the study area in Yeongdong-gun, Korea to identify climate effects on ecosystems of forest vegetation. The main purpose of the study is to examine the long-term changes in forest aboveground biomass(AGB) under three different climate change scenarios; The baseline climate scenario is to maintain the current climate condition; the RCP 4.5 scenario is a stabilization scenario to employ of technologies and strategies for reducing greenhouse gas emissions; the RCP 8.5 scenario is increasing greenhouse gas emissions over time representative with 936ppm of $CO_2$ concentration by 2100. The vegetation survey and tree-ring analysis were conducted to work out the initial vegetation maps and data for operation of the LANDIS model. Six types of forest vegetation communities were found including Quercus mongolica - Pinus densiflora community, Quercus mongolica community, Pinus densiflora community, Quercus variabilis-Quercus acutissima community, Larix leptolepis afforestation and Pinus koraiensis afforestation. As for changes in total AGB under three climate change scenarios, it was found that RCP 4.5 scenario featured the highest rate of increase in AGB whereas RCP 8.5 scenario yielded the lowest rate of increase. These results suggest that moderately elevated temperatures and $CO_2$ concentrations helped the biomass flourish as photosynthesis and water use efficiency increased, but huge increase in temperature ($above+4.0^{\circ}C$) has resulted in the increased respiration with increasing temperature. Consequently, Species productivity(Biomass) of trees decrease as the temperature is elevated drastically. It has been confirmed that the dominant species in all scenarios was Quercus mongolica. Like the trends shown in the changes of total AGB, it revealed the biggest increase in the AGB of Quercus mongolica under the RCP 4.5 scenario. AGB of Quercus mongolica and Quercus variabilis decreased in the RCP 4.5 and RCP 8.5 scenarios after 2050 but have much higher growth rates of the AGB starting from 2050 under the baseline scenario. Under all scenarios, the AGB of coniferous species was eventually perished in 2100. In particular they were extinguished in early stages of the RCP 4.5 and RCP 8.5 scenarios. This is because of natural selection of communities by successions and the failure to adapt to climate change. The results of the study could be expected to be effectively utilized to predict changes of the forest ecosystems due to climate change and to be used as basic data for establishing strategies for adaptation climate changes and the management plans for forest vegetation restoration in ecological restoration fields.

Vegetation of Gangcheonsan Provincial Park in Cheollabuk-do (강천산 군립공원의 식생)

  • Kim, Ha-Song;Oh, Jang-Geun;Jun, Ji-Young
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.1
    • /
    • pp.25-32
    • /
    • 2013
  • This study examined the status of the vegetation around Gangcheonsan provincial park located in Sunchang-gun in Jeollabuk-do and Damyang-gun in Jeollanam-do from June 4 to October 12, 2011. Gangcheonsan vegetation was arranged 9 plant communities in accordance with data of 28 releves. Major forest vegetation included Quercus variabilis communityand Quercus variabilis-Quercus serrata community, Pinus densiflora community, and Pinus densiflora-Quercus variabilis community (evergreen coniferous forest in all), and Phyllostachys nigra var. henonis community (plantation). Wetland vegetation included Salix gracilistyla community (riverbank forests), Phragmites japonica community, and Polygonia thunbergii community. Gangcheonsan Provincial Park has beautiful scenery that is in harmony with fantastically-shaped rocks, waterfalls, and valleys and conserves a specific plant community habitat distributed through the forest wetlands including its valleys. It is necessary to conduct long-term monitoring with its focus on Pinus densiflora community, Lycoris koreana community, and Lycoris squamigera community in the provincial park to grasp the characteristics of ecological inhabit changes in major communities and provide active methods for conservation, restoration, and publicity.

Initial Responses of Quercus serrata Seedlings and Forest Understory to Experimental Gap Treatments

  • Cho, Yong-Chan;Kim, Jun-Soo;Lee, Chang-Seok;Cho, Hyun-Je;Bae, Kwan-Ho
    • Journal of Ecology and Environment
    • /
    • v.32 no.2
    • /
    • pp.87-96
    • /
    • 2009
  • Pinus thunbergii plantations in Pohang-si, Gyeongsangbuk-do, Korea, are of low ecological quality, with arrested succession and a high proportion of ruderal species. To improve the quality of the habitat, we created canopy gaps ($\sim42\;m^2$) and monitored changes in abiotic (light availability, canopy openness) and biotic (survival and growth of seedlings and understory communities) variables in 2007 and 2008 in plots that had received one of five types of treatment: cutting of canopy trees and removal of the understory (CU), cutting of canopy trees only (C), girdling of canopy trees and removal of the understory (GU), girdling of canopy trees (G) or control. Each treatment was applied to three replicate plots. Abiotic variables did not significantly differ among treatments. Survival rates of target species were slightly lower in the CU, G and control conditions. Based on logistic regression analysis, the only significant growth factor affecting survival was height growth. Positive effects of seedling height and leaf area growth on survival were also detected, but did not reach statistical significance. In treatment G, gradual improvement of overstory conditions and mitigation of competition by limitation of disturbance to the understory community were likely to have promoted seedling growth. There were no significant effects of gap treatments on changes in species abundance (cover and richness) and composition of understory between the study years. This result implies that the small gaps created in our study may be below the threshold size to affect understory growth. However, the results of this study are based on a short-term investigation of only two years. Long-term research is strongly recommended to clarify the effects of gap treatment on plant communities in afforested areas.

Community Characteristics and Assessment of Water Quality Impact by Plants at Flooded Area (저수지역 식물의 군집특성 및 수질영향 평가)

  • Lee, Yosang;Kim, Hojoon;Jeong, Seon A
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.6
    • /
    • pp.407-415
    • /
    • 2006
  • This study carried out submerged area due to Dam construction in the near future. It includes species classification of plant, survey of community structure, examination of pollutant load and assessment of water quality impact. The vascular plants of this area are listed 224 taxa; 64 families, 168 genera, 193 species, 30 varieties and 1 form. This study area is classified into total 21 communities, most community was consist of grass vegetation. Among the communities, Erigeron annuus ($869,286m^2$, 22%) community was dominant and Erigeron annuus-Avena fatua comminity (16%) was subdominant until May, and then Erigeron canadensis community occupied most area to $1,774,985m^2$ (32%) from May to July. For the evaluation of water quality impact due to submerged macrophyte, nutrient release test was conducted both dead body macrophyte and living body macrophyte. The results of release test show that T-N is not released at dead body macrophyte, but it is released at living body macrophyte, especially living body Artemisia priceps var. orientalis shows 1.436mgN/g. At release test of dead body macrophyte, T-P release rate of Erigeron annuus shows 0.500mgP/g at the top of them and it also shows 0.436mgP/g at Erigeron annuus of living body macrophyte. T-N load of submerged macrophyte shows 0.76% by comparison of total load on watershed and T-P load of that shows 3.61%. In case of removal macrophyte for reduction of pollutant load in submerged area, T-N load of submerged macrophyte changes from 0.76% to 0.15% by comparison of total load on watershed and T-P load of that changes from 3.61% to 0.72%.

Subsequent application of self-organizing map and hidden Markov models infer community states of stream benthic macroinvertebrates

  • Kim, Dong-Hwan;Nguyen, Tuyen Van;Heo, Muyoung;Chon, Tae-Soo
    • Journal of Ecology and Environment
    • /
    • v.38 no.1
    • /
    • pp.95-107
    • /
    • 2015
  • Because an ecological community consists of diverse species that vary nonlinearly with environmental variability, its dynamics are complex and difficult to analyze. To investigate temporal variations of benthic macroinvertebrate community, we used the community data that were collected at the sampling site in Baenae Stream near Busan, Korea, which is a clean stream with minimum pollution, from July 2006 to July 2013. First, we used a self-organizing map (SOM) to heuristically derive the states that characterizes the biotic condition of the benthic macroinvertebrate communities in forms of time series data. Next, we applied the hidden Markov model (HMM) to fine-tune the states objectively and to obtain the transition probabilities between the states and the emission probabilities that show the connection of the states with observable events such as the number of species, the diversity measured by Shannon entropy, and the biological water quality index (BMWP). While the number of species apparently addressed the state of the community, the diversity reflected the state changes after the HMM training along with seasonal variations in cyclic manners. The BMWP showed clear characterization of events that correspond to the different states based on the emission probabilities. The environmental factors such as temperature and precipitation also indicated the seasonal and cyclic changes according to the HMM. Though the usage of the HMM alone can guarantee the convergence of the training or the precision of the derived states based on field data in this study, the derivation of the states by the SOM that followed the fine-tuning by the HMM well elucidated the states of the community and could serve as an alternative reference system to reveal the ecological structures in stream communities.

Analysis of excreta bacterial community after forced molting in aged laying hens

  • Han, Gi Ppeum;Lee, Kyu-Chan;Kang, Hwan Ku;Oh, Han Na;Sul, Woo Jun;Kil, Dong Yong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.11
    • /
    • pp.1715-1724
    • /
    • 2019
  • Objective: As laying hens become aged, laying performance and egg quality are generally impaired. One of the practical methods to rejuvenate production and egg quality of aged laying hens with decreasing productivity is a forced molting. However, the changes in intestinal microbiota after forced molting of aged hens are not clearly known. The aim of the present study was to analyze the changes in excreta bacterial communities after forced molting of aged laying hens. Methods: A total of one hundred 66-wk-old Hy-Line Brown laying hens were induced to molt by a 2-d water removal and an 11-d fasting until egg production completely ceased. The excreta samples of 16 hens with similar body weight were collected before and immediately after molting. Excreta bacterial communities were analyzed by high-throughput sequencing of bacterial 16S rRNA genes. Results: Bacteroidetes, Firmicutes, and Proteobacteria were the three major bacterial phyla in pre-molting and immediate post-molting hens, accounting for more than 98.0%. Lactobacillus genus had relatively high abundance in both group, but decreased by molting (62.3% in premolting and 24.9% in post-molting hens). Moreover, pathogenic bacteria such as Enterococcus cecorum and Escherichia coli were more abundant in immediate post-molting hens than in pre-molting hens. Forced molting influenced the alpha diversity, with higher Chao1 (p = 0.012), phylogenetic diversity whole tree (p = 0.014), observed operational taxonomic unit indices (p = 0.006), and Simpson indices (p<0.001), which indicated that forced molting increased excreta bacterial richness of aged laying hens. Conclusion: This study improves the current knowledge of bacterial community alterations in the excreta by forced molting in aged laying hens, which can provide increasing opportunity to develop novel dietary and management skills for improving the gastrointestinal health of aged laying hens after molting.