• Title/Summary/Keyword: chamber method

Search Result 1,713, Processing Time 0.03 seconds

A Study of the Transient Flow Characteristics of a Vacuum Ejector-Diffuser System.

  • Rajesh, G.;Kim, H.D.
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2769-2774
    • /
    • 2007
  • In vacuum ejector-diffuser systems where a finite volume secondary chamber is used, the secondary jet exhibits transient characteristics during start-up. A steady state is achieved after some time in which mass entrainment prevails indefinitely inside the ejector, though there is no flow from the secondary chamber. An attempt is made in this work to study the infinite entrainment of secondary jet into the primary jet from a finite secondary chamber, with the help of a computational fluid dynamics method. The present study is also intended to identify the operating range of vacuum ejector-diffuser systems where the steady flow assumption can be applied without uncertainty. The results obtained show that the only condition in which an infinite mass entrainment is possible is the generation of a re-circulation zone near the primary nozzle exit. The flow in the secondary chamber attains a state of dynamic equilibrium at this point. Steady flow assumption is valid only after this point.

  • PDF

Die Stress and Process Analysis for Condenser Tube Extrusion according to Chamber Height (접합실 높이에 따른 컨덴서 튜브 직접압출 공정 및 금형강도 해석)

  • Lee, J.M.;Kim, B.M.;Jung, Y.D.;Jo, H.;Jo, H.H.
    • Transactions of Materials Processing
    • /
    • v.12 no.3
    • /
    • pp.214-220
    • /
    • 2003
  • In the case of hollow cylinder extrusion using porthole die, the effects of extrusion parameters-temperature, the speed of extrusion, the shape of the die and mandrel-on metal flow in porthole die extrusion of aluminum have been investigated. There have been few studies about condenser tube extruded by porthole die. This study was designed to evaluate metal flow, welding pressure, extrusion load, tendency of mandrel deflection according to variation of chamber length in porthole die. The welding chamber height in condenser tube was calculated by using finite element method. Forming analysis results for condenser tube would provide useful information for the optimal design of porthole die.

Numerical Simulation for the Improvement of Complex Incinerator (신개념 소각 연소실의 성능향상을 위한 해석연구 사례)

  • Go, Young-Gun;Ryu, Chang-Kook;Choi, Sang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.157-163
    • /
    • 2002
  • Using the CFD method, we investigated the combustion characteristics of grate-rotary kiln incinerator through the residence time, path line of flow and distributions of temperature and CO mass fraction according to the shape of mixing chamber and the existence and nonexistence of baffle at the exit of bypass duct. The results show that the now mixing and residence time could be variable according to the shape of mixing chamber and baffle, and we could know the temperature in the mixing chamber could increase too high if the combustion process on the grate retarded.

  • PDF

A Turbulent Bounbary Layer Effect of the De-Laval Nozzle on the Combustion Chamber Pressure (De-Laval 노즐의 난류 경계층 유동이 연소실 압력에 미치는 영향)

  • 장태호;이방업;배주찬
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.5
    • /
    • pp.635-644
    • /
    • 1986
  • A Compuressible turbulent boundary layer effect of the high temperature, accelerating gas flow through the De-Laval nozzle on combustion chamber pressure is numerically investigated. For this purpose, the coupled momentum integral equation and energy integral equation are solved by the Bartz method, and 1/7 power law for both the turbulent boundary layer velocity distribution and temperature distribution is assumed. As far as the boundary layer thicknesses are concerned, we can obtain reasonable solutions even if relatively simple approximations to the skin friction coefficient and stanton number have been used. The effects of nozzle wall cooling and/or mass flow rate on the boundary layer thicknesses and the combustion chamber pressure are studied. Specifically, negative displacement thickness is appeared as the ratio of the nozzle wall temperature to the stagnation temperature of the free stream decreases, and, consequently, it makes the combustion chamber pressure low.

A Study on the Effects of Induced Mixture Flows and the Stratified Charge for a Lean Burn (희박연소를 위한 혼합기의 성층급기와 유동에 관한 연구)

  • 전대수;이태원;윤수한;하종률
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 2000
  • In the present study, the IDI-type constant volume chamber, which utilizes the indirect injection stratified charge method, is used to solve several problems including misfires and cycle-variations caused by unstable initial ignitions. A subchamber has been used to make an ignitable mixture under the low mean equivalence ratio. After burned in the subchamber, the flame jet getting through the passage hode enters the main chamber and burns the lean charge. There are many factors which affect the combustion characteristics of the indirect injection stratified engine. The passage hole angle is the most important since it determines the direction of flame flows into the main chamber. In the present study, we measured the combustion pressure, and the wall temperature, and computed the heat flux through the cylinder wall in order to understand the combustion characteristics depending on passage hole angle and the equivalence ratio.

  • PDF

The Effect of a Vortex Chamber Diameter Ratio on Energy Separation (보텍스 생성실 지름비가 에너지 분리에 미치는 영향)

  • 유갑종;이병화;최인수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.8
    • /
    • pp.667-673
    • /
    • 2001
  • As an alternative cooling method to reduce environmental hazard, vortex tubes have been studied for energy separation into cold and hot streams. Hence, the experiments were carried out systematically to find the best ratio of vortex chamber diameter to tube diameter. Also, the work was don to investigate how inlet pressure and geometric ratios of vortex tube affected temperature differences at tow needs as ell as cooling capacity and cooling efficiency. The result showed that the maximum temperature differences at the both ends and the maximum cooling efficiency were obtained when the ratio of vortex chamber diameter was about 1.45, while the inlet pressure ws not higher than 0.7 MPa.

  • PDF

A Numerical Study on the Reduction of Water Hammering in a Simple Water Supply Pipe System

  • Lim, Ki-Won;Cha, Dong-Jin
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.2
    • /
    • pp.51-61
    • /
    • 2001
  • A numerical study has been conducted to characterize the transient pressure in a simple water supply pipe system with an air chamber by utilizing a commercial code that employs the method of characteristics. Some results produced for validation in the study agree quite well with the previously reported. Several parameters are than varied. Among them are the valve closure time, the wave speed, the static pressure, the polytropic exponent, the air chamber volume, the diameter and the shape of orifice in the air chamber, etc, while the water temperature and velocity are kept constant at $20^\circ{C}$ and 0.8m/s, respectively. Results reported in this parametric study may be useful to understand the unsteady behavior of the system.

  • PDF

In Vitro Test of a Micro Syringe Fabricated for the Intravascular Injection (초소형 주사 시스템의 모의 혈관 내에서의 작동 시험)

  • Kim, Geun-Young;Sim, Woo-Young;Lee, Sang-Woo;Yang, Sang-Sik;Chang, Jun-Keun;Lee, Seung-Ki
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.6
    • /
    • pp.307-313
    • /
    • 2001
  • A micro syringe which can be attached to the end of a micro intravascular endoscope for drug injection is fabricated and its characteristic is tested. The syringe consists of a drug chamber and an actuator chamber which are separated by a silicone rubber membrane. The drug chamber is filled with liquid drug by the membrance actuation caused by the vaporization and condensation of the working liquid in the actuator chamber. The liquid drug is ejected by the electrolysis of the working liquid. The membrane deflection by each actuation method has been measured. The liquid ejection image has been captured during the electrolysis of the electrolyte. Also, the successful operation of the micro syringe under the normal blood pressure was verified.

  • PDF

Development of a Tying-Unit Controller for a Variable Chamber Round Baler (가변 원형 베일러의 결속 기구 제어 장치 개발)

  • 김종언;김경욱
    • Journal of Biosystems Engineering
    • /
    • v.25 no.5
    • /
    • pp.341-350
    • /
    • 2000
  • This study was conducted to develop a control unit for a tying device of a variable chamber round baler. The work process of the tying device was thoroughly analyzed and the control sequence was established according to the work process. Based on this control sequence, a control unit using an 8 bit microprocessor AT 89C52 as a CPU was developed. The driving circuit to control the actuator motion was developed and the PWM method was used to regulate the velocity of the actuator. On the front panel of the control unit, indicators were also installed to show the operations being conducted. A prototype of the developed control unit was manufactured and tested. A total of 50 complete cycles of the control sequence was repeated and no failure was observed. It was evaluated that the developed control unit has an excellent performance and can be used practically for variable chamber round balers.

  • PDF

Numerical Analysis of Wave Field in OWC Chamber Using VOF Model

  • Liu, Zhen;Hyun, Beom-Soo;Jin, Ji-Yuan
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.1-6
    • /
    • 2008
  • Recently Oscillating Water Column (OWC) plants have been widely employed in wave energy conversion applications. It is necessary to investigate the chamber and optimize its shape parameters for maximizing air flow and energy conversion due to wave conditions. A 2D numerical wave tank based on a Fluent and VOF model is developed to generate the incident waves and is validated by theoretical solutions. The oscillating water column motion in the chamber predicted by the numerical method is compared with the available experimental data. Several geometric scales of the chamber are calculated to investigate the effect of the shape parameters on the oscillating water column motion and wave energy conversion.