• Title/Summary/Keyword: chamber method

Search Result 1,708, Processing Time 0.038 seconds

Dose estimation of cone-beam computed tomography in children using personal computer-based Monte Carlo software (PCXMC 소프트웨어를 이용한 소아에서의 CBCT 환자선량 평가)

  • Kim, Eun-Kyung
    • The Journal of the Korean dental association
    • /
    • v.58 no.7
    • /
    • pp.388-397
    • /
    • 2020
  • Objective: The purpose of the study was to calculate the effective and absorbed organ doses of cone-beam computed tomography (CBCT) in pediatric patient using personal computer-based Monte Carlo (PCXMC) software and to compare them with those measured using thermoluminescent dosimeters (TLDs) and anthropomorphic phantom. Materials and Methods: Alphard VEGA CBCT scanner was used for this study. A large field of view (FOV) (20.0 cm × 17.9 cm) was selected because it is a commonly used FOV for orthodontic analyses in pediatric patients. Ionization chamber of dose-area product (DAP) meter was located at the tube side of CBCT scanner. With the clinical exposure settings for a 10-year-old patient, DAP value was measured at the scout and main projection of CBCT. Effective and absorbed organ doses of CBCT at scout and main projection were calculated using PCXMC and PCXMCRotation software respectively. Effective dose and absorbed organ doses were compared with those obtained by TLDs and a 10-year-old child anthropomorphic phantom at the same exposure settings. Results: The effective dose of CBCT calculated by PCXMC software was 292.6 μSv, and that measured using TLD and anthropomorphic phantom was 292.5 μSv. The absorbed doses at the organs largely contributing to effective dose showed the small differences between two methods within the range from -18% to 20%. Conclusion: PCXMC software might be used as an alternative to the TLD measurement method for the effective and absorbed organ dose estimation in CBCT of large FOV in pediatric patients.

  • PDF

GARRE'S OSTEOMYELITIS OF THE MANDIBLE RESOLVED BY ENDODONTIC TREATMENT IN CHILDREN: A CASE REPORT (소아의 하악에 발생한 Garre 골수염의 근관치료에 관한 증례보고)

  • Lee, Dong-Hyun;Kim, Dae-Eop;Lee, Kwang-Hee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.23 no.3
    • /
    • pp.688-696
    • /
    • 1996
  • Garre's osteomyelitis is a unique form of osteomyelitis characterized rediographically by localized thickening of the periosteum and deposition of laminated subperiosteal bone. The most common inciting factor is a mandibular infection in permanent first molar with necrotic pulp. This disease occurs primarily in children and to date in all instances it has occured only in mandible. It usually results in hard swelling over the jaws, producing facial asymmetry with little or no pain. The overlying skin is normal but can occasionally be inflammed mostly when pain is present. Palpation reveals a usually smooth, bone-hard lesion which feel like an inherent part of the mandible. Unlike other forms of osteomyelitis, there is no marked increase in fever, white bloods cell count, sedimentation rate or alkaline phosphatase value. The treatment of Garre's osteomyelitis usually consist of elimination of the sourses of infection, i.e., either extration of an offending infected teeth or root canal therapy. This treatment almost always results in resolution of the Garre's osteomyelitis. Resistant cases have involved secondary surgery, i.e., decortication and sequestrectomy. This report presents three cases of Garre's osteomyelitis resolved by endodontic treatment. Cliniqtl examination revealed swelling on the face with no tenderness. Periapical radiograph showed deep caries lesion extending into pulp chamber and periapical radiolucency. Occlusal radiograph showed an enlargement of bone and stretching the periosteum. A clinical diagnosis of the Garre's osteomyelitis was made. Endodontic treatment was accomplished with conventional method and restored facial symmetry. Long-term check-ups are necessary to evaluate the results of endodontic treatment.

  • PDF

AZD1480 Can Inhibit the Biological Behavior of Ovarian Cancer SKOV3 Cells in vitro

  • Sun, Zhao-Ling;Tang, Ya-Juan;Wu, Wei-Guang;Xing, Jun;He, Yan-Fang;Xin, De-Mei;Yu, Yan-Li;Yang, Yang;Han, Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.8
    • /
    • pp.4823-4827
    • /
    • 2013
  • Objective: To study the mechanism of effects of AZD1480 on the SKOV3 ovarian cancer cell line. Methods: The MTT method was used to assess cellular proliferation, flow cytometry for cellular apoptosis, the scratch test to determine migration, transwell chamber assays to detect cellular invasion, plate clone experiments to detect the clone forming ability and Western blotting to determine p-STAT3 protein levels. Results: The proliferation rate, migration ability, invasiveness and the clone forming ability of SKOV3 cells were reduced after treatment with AZD1480, while apoptosis rate and chemotherapeutic susceptibility were increased. After treatment with AZD1480 plus cisplatin, the apoptosis rate increased significantly while the expression level of p-STAT3 protein was decreased. Conclusion: AZD1480 can inhibit the proliferation, invasion, metastasis and clone formation of SKOV3 cells, induce cellulsar apoptosis, increase the chemotherapeutic sensitivity and reduce the expression level of p-STAT3 protein.

Respiration Rate Measurement based on Motion Compensation using Infrared Camera (열화상 카메라를 이용한 움직임 보정 기반 호흡 수 계산)

  • Kwon, Jun Hwan;Shin, Cheung Soo;Kim, Jeongmin;Oh, Kyeong Taek;Yoo, Sun Kook
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.9
    • /
    • pp.1076-1089
    • /
    • 2018
  • Respiration is the process of moving air into and out of the lung. Respiration changes the temperature in the chamber while exchanging energy. Especially the temperature of the face. Respiration monitoring using an infrared camera measures the temperature change caused by breathing. The conventional method assumes that motion is not considered and measures respiration. These assumptions can not accurately measure the respiration rate when breathing moves. In addition, the respiration rate measurement is performed by counting the number of peaks of the breathing waveform by displaying the position of the peak in a specific window, and there is a disadvantage that the breathing rate can not be measured accurately. In this paper, we use KLT tracking and block matching to calibrate limited weak movements during breathing and extract respiration waveform. In order to increase the accuracy of the respiration rate, the position of the peak used in the breath calculation is calculated by converting from a single point to a high resolution. Through this process, the respiration signal could be extracted even in weak motion, and the respiration rate could be measured robustly even in various time windows.

Optimization of Amorphous Indium Gallium Zinc Oxide Thin Film for Transparent Thin Film Transistor Applications

  • Shin, Han Jae;Lee, Dong Ic;Yeom, Se-Hyuk;Seo, Chang Tae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.352.1-352.1
    • /
    • 2014
  • Indium Tin Oxide (ITO) films are the most extensively studied and commonly used as ones of TCO films. The ITO films having a high electric conductivity and high transparency are easily fabricated on glass substrate at a substrate temperature over $250^{\circ}C$. However, glass substrates are somewhat heavy and brittle, whereas plastic substrates are lightweight, unbreakable, and so on. For these reasons, it has been recently suggested to use plastic substrates for flexible display application instead of glass. Many reaearchers have tried to produce high quality thin films at rood temperatures by using several methods. Therefore, amorphous ITO films excluding thermal process exhibit a decrease in electrical conductivity and optical transparency with time and a very poor chemical stability. However the amorphous Indium Gallium Zinc Oxide (IGZO) offers several advantages. For typical instance, unlike either crystalline or amorphous ITO, same and higher than a-IGZO resistivity is found when no reactive oxygen is added to the sputter chamber, this greatly simplifies the deposition. We reported on the characteristics of a-IGZO thin films were fabricated by RF-magnetron sputtering method on the PEN substrate at room temperature using 3inch sputtering targets different rate of Zn. The homogeneous and stable targets were prepared by calcine and sintering process. Furthermore, two types of IGZO TFT design, a- IGZO source/drain material in TFT and the other a- ITO source/drain material, have been fabricated for comparison with each other. The experimental results reveal that the a- IGZO source/drain electrode in IGZO TFT is shown to be superior TFT performances, compared with a- ITO source/drain electrode in IGZO TFT.

  • PDF

Indoor Neutral Temperature Range using Temperature and Humidity Perception Assessment

  • Yang, Wonyoung
    • KIEAE Journal
    • /
    • v.16 no.5
    • /
    • pp.29-37
    • /
    • 2016
  • Purpose: Indoor thermal comfort can be identified by combination of temperature, humidity, and air flow, etc. However, most thermal indexes in regard to thermal comfort are temperature dominant since it has been considered as a significant factor affecting to indoor thermal comfort The purposes of this study are to investigate indoor neutral temperature range of young Koreans with humidity perception, and to introduce a neutral temperature for temperature preference as well as temperature sensation in order to define the neutral temperature range chosen by occupants. It could be used as basic data for heating and cooling. Method: 26 research participants volunteered in 7 thermal conditions ($18^{\circ}C$ RH 30%, $18^{\circ}C$ RH 60%, $24^{\circ}C$ RH 30%, $24^{\circ}C$ RH 40%, $24^{\circ}C$ RH 60%, $30^{\circ}C$ RH 30%, $30^{\circ}C$ RH 60%) and completed subjective assessment in regard to temperature/humidity sensation and preference twice per condition in an indoor environmental chamber. Result: In RH 30%, sensation neutral temperature was $25.1^{\circ}C$ for men and $27.0^{\circ}C$ for women, and preference neutral temperature was $25.5^{\circ}C$ for men and $27.8^{\circ}C$ for women. In RH 60%, sensation neutral temperature was $23.6^{\circ}C$ for men and $25.9^{\circ}C$ for women, and preference neutral temperature was $23.4^{\circ}C$ for men and $26.3^{\circ}C$ for women. Neutral temperature increased with increasing relative humidity. Women were sensitive to humidity changes. Men expressed humidity changes as temperature variations. In most conditions, preference neutral temperatures were higher than sensation neutral temperatures, however, the preference neutral temperature for men in humid condition was lower than the sensation neutral temperature.

Installation for Preparing of Nanopowders by Target Evaporation with Pulsed Electron Beam

  • Sokovnin S. Yu.;Kotov Yu. A.;Rhee C. K.
    • Journal of Powder Materials
    • /
    • v.12 no.3
    • /
    • pp.167-173
    • /
    • 2005
  • Production of weakly agglomerated nanopowders with the characteristic size of about 10 nm and a narrow particle size distribution is still a topical problem especially if the matter is an acceptable output (>50 g/hour), a high purity of the final product, and a low (energy consumption. The available experience and literature data show that the most promising approach to production of such powders is the evaporation-condensation method, which has a set of means for heating of the target. From this viewpoint the use of pulsed electron accelerators for production of nanopowders is preferable since they allow a relatively simple adjustment of the energy, the pulse length, and the pulse repetition rate. The use of a pulsed electron accelerator provides the following opportunities: a high-purity product; only the target and the working gas will interact and their purity can be controlled; evaporation products will be removed from the irradiation zone between pulses; as a result, the electron energy will be used more efficiently; adjustment of the particle size distribution and the characteristic size of particles by changing the pulse energy and the irradiated area. Considering the obtained results, we developed a design and made an installation for production of nanopowders, which is based on a hollow-cathode pulsed gas-filled diode. The use of a hollow-cathode gas-filled diode allows producing and utilizing an electron beam in a single chamber. The emission modulation in the hollow cathode will allow forming an electron beam 5 to 100 ms long. This will ensure an exact selection of the beam energy. By now we have completed the design work, manufactured units, equipped the installation, and began putting the installation into operation. A small amount of nanopowders has been produced.

Characterization of aluminized RDX for chemical propulsion

  • Yoh, Jai-ick;Kim, Yoocheon;Kim, Bohoon;Kim, Minsung;Lee, Kyung-Cheol;Park, Jungsu;Yang, Seungho;Park, Honglae
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.418-424
    • /
    • 2015
  • The chemical response of energetic materials is analyzed in terms of 1) the thermal decomposition under the thermal stimulus and 2) the reactive flow upon the mechanical impact, both of which give rise to an exothermic thermal runaway or an explosion. The present study aims at building a set of chemical kinetics that can precisely model both thermal and impact initiation of a heavily aluminized cyclotrimethylene-trinitramine (RDX) which contains 35% of aluminum. For a thermal decomposition model, the differential scanning calorimetry (DSC) measurement is used together with the Friedman isoconversional method for defining the frequency factor and activation energy in the form of Arrhenius rate law that are extracted from the evolution of product mass fraction. As for modelling the impact response, a series of unconfined rate stick data are used to construct the size effect curve which represents the relationship between detonation velocity and inverse radius of the sample. For validation of the modeled results, a cook-off test and a pressure chamber test are used to compare the predicted chemical response of the aluminized RDX that is either thermally or mechanically loaded.

Surgical management ofuniventricular heart (단일심실증의 수술요법)

  • No, Jun-Ryang;Kim, Eung-Jung
    • Journal of Chest Surgery
    • /
    • v.19 no.4
    • /
    • pp.618-626
    • /
    • 1986
  • Univentricular heart is a rare congenital cardiac anomaly in which the atrial chambers are connected to only one ventricular chamber and it consists of a diverse group of cardiac malformation characterized by both AV valves or a common AV valve opening into the same ventricle, or the presence of only a solitary AV valve. In spite of recent development in cardiac surgery, corrective operations for univentricular heart still have high mortality and complication rate. Twenty eight patients underwent corrective operation for univentricular heart at Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital from February 1979 to July 1986. Of the 28 patients, 7 patients were operated on by ventricular septation and 21 patients by modified Fontan operation. Of the 28 patients, 19 patients were male and 9 patients female and ages ranged from 5 months to 18 years old with the average age of 7.3 years. There were 2 mortalities in 7 patients operated on by septation with the mortality rate of 28.6% and 5 complications, 3 complete AV block, 1 low cardiac output and 1 arrhythmia. All survived patients are being followed up without specific problem till now. There were 10 mortalities in 21 patients operated on by modified Fontan operation with the mortality rate of 47.6% and 10 complications, 2 low cardiac output, 2 respiratory failure necessitating tracheostomy, 2 persistent cyanosis, 2 arrhythmia, 1 missing of left AV valve in situs inversus patient due to misdiagnosis and one rupture of closed right AV valve. Incremental risk factors for operative mortality are young age less than 5 years old, anomalous pulmonary and systemic venous drainage and atrial septation procedure. In 11 survived patients, 9 patients show good follow-up results but one patient complains of persistent cyanosis and another one patient is suffered from CHF. In our series, results of corrective operation for univentricular heart shows continuing improvement but still high mortality and complication rate. So there must be continuing improvement in surgical result by selection of patient, by adequate decision making for timing and method of operation and by improving operative methods.

  • PDF

Vibration Displacements Measurement of Slope Models using Close Range Photogrammetry (근거리 사진측량을 이용한 사면모형 진동 변위 측정)

  • Jung, Sung-Heuk;Lee, Jae-Young;Choi, Suk-Keun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.6
    • /
    • pp.561-568
    • /
    • 2011
  • The purpose of this study is to measure displacements that occurs on a surface and interior of slope model and the shape when the slope is destroyed at vibration experiment of the slope model using close range photogrammetry. The circle targets and sphere targets are installed on a chamber and a slope model, while the earthquake wave are applied in regular time interval. The close range photogrammetric images are acquired in each displacements step until the slope model is destroyed. Those photos are processed by image processing method and the center points of targets are automatically extracted. Furthermore, the three-dimensional coordinates of targets are calculated by image orientation and bundle adjustment processing. As a result, amount of displacement at each level is precisely measured and provided the basic information for assessing the slope stability using three-dimensional measurement of the target movement and slope destruction.