Dmitry A., Tarasov;Andrey G., Tyagunov;Oleg B., Milder
Advances in aircraft and spacecraft science
/
제9권5호
/
pp.367-375
/
2022
Modeling the properties of complex alloys such as nickel superalloys is an extremely challenging scientific and engineering task. The model should take into account a large number of uncorrelated factors, for many of which information may be missing or vague. The individual contribution of one or another chemical element out of a dozen possible ligants cannot be determined by traditional methods. Moreover, there are no general analytical models describing the influence of elements on the characteristics of alloys. Artificial neural networks are one of the few statistical modeling tools that can account for many implicit correlations and establish correspondences that cannot be identified by other more familiar mathematical methods. However, such networks require careful tuning to achieve high performance, which is time-consuming. Data preprocessing can make model training much easier and faster. This article focuses on combining physics-based deep network configuration and input data engineering to simulate the solvus temperature of nickel superalloys. The used deep artificial neural network shows good simulation results. Thus, this method of numerical simulation can be easily applied to such problems.
Algal organic matters (AOMs) are challenging to remove using traditional water treatment methods. Additionally, they are recognized as disinfection by product (DBP) precursors during the chlorination process. These compounds have the potential to seriously harm aquatic creatures. Despite the fact that AOMs and DBPs formed from algae can harm aquatic species by impairing their cognitive function and causing behavioral problems, only a few studies on the effects of AOMs and associated DBPs have been conducted. To assess the impact of extracellular organic materials (EOMs) produced by three different hazardous algal species and the chlorinated EOMs on zebrafish, this study used fish acute embryo toxicity (FET) and cognitive function tests. With rising EOM concentrations, the embryo's survival rate and mental capacity both declined. Of the three algal species, the embryo exposed to Microcystis aeruginosa EOM exhibited the lowest survival rate. On the other hand, the embryo exposed to EOMs following chlorination demonstrated a drop in CT values in both the survival rate and cognitive ability. These findings imply that EOMs and EOMs treated with chlorine may have detrimental effects on aquatic life. Therefore, an effective EOM management is needed in aquatic environment.
Kim, Yoojun;Kim, Hyunjun;Sim, Sunghan;Ham, Youngjib
International conference on construction engineering and project management
/
The 9th International Conference on Construction Engineering and Project Management
/
pp.904-911
/
2022
Occlusion is one of the most challenging problems for computer vision-based construction monitoring. Due to the intrinsic dynamics of construction scenes, vision-based technologies inevitably suffer from occlusions. Previous researchers have proposed the occlusion handling methods by leveraging the prior information from the sequential images. However, these methods cannot be employed for construction object detection in non-sequential images. As an alternative occlusion handling method, this study proposes a data augmentation-based framework that can enhance the detection performance under occlusions. The proposed approach is specially designed for rebar occlusions, the distinctive type of occlusions frequently happen during construction worker detection. In the proposed method, the artificial rebars are synthetically generated to emulate possible rebar occlusions in construction sites. In this regard, the proposed method enables the model to train a variety of occluded images, thereby improving the detection performance without requiring sequential information. The effectiveness of the proposed method is validated by showing that the proposed method outperforms the baseline model without augmentation. The outcomes demonstrate the great potential of the data augmentation techniques for occlusion handling that can be readily applied to typical object detectors without changing their model architecture.
KSII Transactions on Internet and Information Systems (TIIS)
/
제17권3호
/
pp.740-753
/
2023
Text recognition in natural scene images is a challenging problem in computer vision. The accurate identification of ship number characters can effectively improve the level of ship traffic management. However, due to the blurring caused by motion and text occlusion, the accuracy of ship number recognition is difficult to meet the actual requirements. To solve these problems, this paper proposes a dual-branch network based on the CRNN identification network. The network couples image restoration and character recognition. The CycleGAN module is used for blur restoration branch, and the Pix2pix module is used for character occlusion branch. The two are coupled to reduce the impact of image blur and occlusion. Input the recovered image into the text recognition branch to improve the recognition accuracy. After a lot of experiments, the model is robust and easy to train. Experiments on CTW datasets and real ship maps illustrate that our method can get more accurate results.
Nowadays fuzzy logic in control applications is a well-recognized alternative, and this is thanks to its inherent advantages. Generalized type-2 fuzzy sets allow for a third dimension to capture higher order uncertainty and therefore offer a very powerful model for uncertainty handling in real world applications. With the recent advances that allowed the performance of general type-2 fuzzy logic controllers to increase, it is now expected to see the widespread of type-2 fuzzy logic controllers to many challenging applications in particular in problems of structural control, that is the case study in this paper. It should be highlighted that this is the first application of general type-2 fuzzy approach in civil structures. In the following, general type-2 fuzzy logic controller (GT2FLC) will be used for active control of a 9-story nonlinear benchmark building. The design of type-1 and interval type-2 fuzzy logic controllers is also considered for the purpose of comparison with the GT2FLC. The performance of the controller is validated through the computer simulation on MATLAB. It is demonstrated that extra design degrees of freedom achieved by GT2FLC, allow a greater potential to better model and handle the uncertainties involved in the nature of earthquakes and control systems. GT2FLC outperforms successfully a control system that uses T1 and IT2 FLCs.
Byeong-Yeon KIM;Jewhan LEE;Youngil CHO;Jaehyuk EOH;Hyungmo KIM
Nuclear Engineering and Technology
/
제54권12호
/
pp.4412-4421
/
2022
The pressure measurement in the high-temperature liquid metal system, such as Sodium-cooled Fast Reactor(SFR), is important and yet it is very challenging due to its nature. The measuring pressure is relatively at low range and the applied temperature varies in wide range. Moreover, the pressure transfer material in impulse line needs to considered the high temperature condition. The conventional diaphragm-based approach cannot be used for it is impossible to remove the effect of thermal expansion. In this paper, the Fiber Bragg Grating(FBG) sensor-based pressure measuring concept is suggested that it is free of problems induced by the thermal expansion. To verify this concept, a prototype was fabricated and tested in an appropriate conditions. The uncertainty analysis result of the experiment is also included. The final result of this study clearly showed that the FBG-based pressure transmitter system is applicable to the extreme environment, such as SFR and any other high-temperature liquid metal system and the measurement uncertainty is within reasonable range.
Neutron transport calculations are extremely challenging due to the high computational cost of large and complex problems. A multilevel octree grid algorithm (MLTG) of discrete ordinates method was developed to improve the modeling accuracy and simulation efficiency on 3-D Cartesian grids. The Balakovo-3 VVER-1000 neutron dosimetry benchmark is calculated to verify and validate this numerical technique. A simplified S2 synthetic acceleration is used in the MLTG calculation method to improve the convergence of the source iterations. For the triangularly arranged fuel pins, we adopt a source projection algorithm to generate pin-by-pin source distributions of hexagonal assemblies. MLTG provides accurate geometric modeling and flexible fixed source description at a lower cost than traditional Cartesian grids. The total number of meshes is reduced to 1.9 million from the initial 9.5 million for the Balakovo-3 model. The numerical comparisons show that the MLTG results are in satisfactory agreement with the conventional SN method and experimental data, within the root-mean-square errors of about 4% and 10%, respectively. Compared to uniform fine meshing, approximately 70% of the computational cost can be saved using the MLTG algorithm for the Balakovo-3 computational model.
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권5호
/
pp.1466-1488
/
2022
Recently, the importance and necessity of artificial intelligence (AI), especially machine learning, has been emphasized. In fact, studies are actively underway to solve complex and challenging problems through the use of AI systems, such as intelligent CCTVs, intelligent AI security systems, and AI surgical robots. Information security that involves analysis and response to security vulnerabilities of software is no exception to this and is recognized as one of the fields wherein significant results are expected when AI is applied. This is because the frequency of malware incidents is gradually increasing, and the available security technologies are limited with regard to the use of software security experts or source code analysis tools. We conducted a study on MalDC, a technique that converts malware into images using machine learning, MalDC showed good performance and was able to analyze and classify different types of malware. MalDC applies a preprocessing step to minimize the noise generated in the image conversion process and employs an image augmentation technique to reinforce the insufficient dataset, thus improving the accuracy of the malware classification. To verify the feasibility of our method, we tested the malware classification technique used by MalDC on a dataset provided by Microsoft and malware data collected by the Korea Internet & Security Agency (KISA). Consequently, an accuracy of 97% was achieved.
International conference on construction engineering and project management
/
The 9th International Conference on Construction Engineering and Project Management
/
pp.196-203
/
2022
The resource constrained scheduling problem (RCSP) constitutes one of the most challenging problems in Project Management, as it combines multiple parameters, contradicting objectives (project completion within certain deadlines, resource allocation within resource availability margins and with reduced fluctuations), strict constraints (precedence constraints between activities), while its complexity grows with the increase in the number of activities being executed. Due to the large solution space size, this work investigates the application of Genetic Algorithms to approximate the optimal resource alolocation and obtain optimal trade-offs between different project goals. This analysis uses the cost of exceeding the daily resource availability, the cost from the day-by-day resource movement in and out of the site and the cost for using resources day-by-day, to form the objective cost function. The model is applied in different case studies: 1 project consisting of 10 activities, 4 repetitive projects consisting of 40 activities in total and 16 repetitive projects consisting of 160 activities in total, in order to evaluate the effectiveness of the algorithm in different-size solution spaces and under alternative optimization criteria by examining the quality of the solution and the required computational time. The case studies 2 & 3 have been developed by building upon the recurrence of the unit/sub-project (10 activities), meaning that the initial problem is multiplied four and sixteen times respectively. The evaluation results indicate that the proposed model can efficiently provide reliable solutions with respect to the individual goals assigned in every case study regardless of the project scale.
International conference on construction engineering and project management
/
The 5th International Conference on Construction Engineering and Project Management
/
pp.616-623
/
2013
One of the oldest, most common engineering problems is measuring the dimensions of different objects and the distances between locations. In AEC/FM, related uses vary from large-scale applications such as measuring distances between cities to small-scale applications such as measuring the depth of a crack or the width of a welded joint. Within the last few years, advances in applying new technologies have prompted the development of new measuring devices such as ultrasound and laser-based measurers. Because of wide varieties in type, associated costs, and levels of accuracy, the selection of an optimal measuring technology is challenging for construction engineers and facility managers. To tackle this issue, we present an overview of various measuring technologies adopted by experts in the area of AEC/FM. As the next step, to evaluate the performance of these technologies, we select one indoor and one outdoor case and measure several dimensions using six categories of technologies: tapes, total stations, laser measurers, ultrasound devices, laser scanners, and image-based technologies. Then we evaluate the results according to various metrics such as accuracy, ease of use, operation time, associated costs, compare these results, and recommend optimal technologies for specific applications. The results also revealed that in most applications, computer vision-based technologies outperform traditional devices in terms of ease of use, associated costs, and accuracy.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.