• Title/Summary/Keyword: challenge model

Search Result 876, Processing Time 0.023 seconds

Encryption-based Image Steganography Technique for Secure Medical Image Transmission During the COVID-19 Pandemic

  • Alkhliwi, Sultan
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.83-93
    • /
    • 2021
  • COVID-19 poses a major risk to global health, highlighting the importance of faster and proper diagnosis. To handle the rise in the number of patients and eliminate redundant tests, healthcare information exchange and medical data are transmitted between healthcare centres. Medical data sharing helps speed up patient treatment; consequently, exchanging healthcare data is the requirement of the present era. Since healthcare professionals share data through the internet, security remains a critical challenge, which needs to be addressed. During the COVID-19 pandemic, computed tomography (CT) and X-ray images play a vital part in the diagnosis process, constituting information that needs to be shared among hospitals. Encryption and image steganography techniques can be employed to achieve secure data transmission of COVID-19 images. This study presents a new encryption with the image steganography model for secure data transmission (EIS-SDT) for COVID-19 diagnosis. The EIS-SDT model uses a multilevel discrete wavelet transform for image decomposition and Manta Ray Foraging Optimization algorithm for optimal pixel selection. The EIS-SDT method uses a double logistic chaotic map (DLCM) is employed for secret image encryption. The application of the DLCM-based encryption procedure provides an additional level of security to the image steganography technique. An extensive simulation results analysis ensures the effective performance of the EIS-SDT model and the results are investigated under several evaluation parameters. The outcome indicates that the EIS-SDT model has outperformed the existing methods considerably.

Experimental and numerical study of autopilot using Extended Kalman Filter trained neural networks for surface vessels

  • Wang, Yuanyuan;Chai, Shuhong;Nguyen, Hung Duc
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.314-324
    • /
    • 2020
  • Due to the nonlinearity and environmental uncertainties, the design of the ship's steering controller is a long-term challenge. The purpose of this study is to design an intelligent autopilot based on Extended Kalman Filter (EKF) trained Radial Basis Function Neural Network (RBFNN) control algorithm. The newly developed free running model scaled surface vessel was employed to execute the motion control experiments. After describing the design of the EKF trained RBFNN autopilot, the performances of the proposed control system were investigated by conducting experiments using the physical model on lake and simulations using the corresponding mathematical model. The results demonstrate that the developed control system is feasible to be used for the ship's motion control in the presences of environmental disturbances. Moreover, in comparison with the Back-Propagation (BP) neural networks and Proportional-Derivative (PD) based control methods, the EKF RBFNN based control method shows better performance regarding course keeping and trajectory tracking.

Supply models for stability of supply-demand in the Korean pork market

  • Chunghyeon, Kim;Hyungwoo, Lee ;Tongjoo, Suh
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.3
    • /
    • pp.679-690
    • /
    • 2022
  • As the supply and demand of pork has become a significant concern in Korea, controlling it has become a critical challenge for the industry. However, compared to the demand for pork, which has relatively stable consumption, it is not easy to maintain a stable supply. As the preparation of measures for a supply-demand crisis response and supply control in the pig industry has emerged as an important task, it has become necessary to establish a stable supply model and create an appropriate manual. In this study, a pork supply prediction model is constructed using reported data from the pig traceability system. Based on the derived results, a method for determining the supply-demand crisis stage using a statistical approach was proposed. From the results of the analysis, working days, African swine fever, heat wave, and Covid-19 were shown to affect the number of pigs graded in the market. A test of the performance of the model showed that both in-sample error rate and out-sample error rate were between 0.3 - 7.6%, indicating a high level of predictive power. Applying the forecast, the distribution of the confidence interval of the predicted value was established, and the supply crisis stage was identified, evaluating supply-demand conditions.

Why Consumers Use Mobile Commerce? - International Comparative Study of M-Commerce Model

  • Han, Sang-Lin;Nguyen, T.P. Thao;Nguyen, V. Anh
    • Asia Marketing Journal
    • /
    • v.18 no.3
    • /
    • pp.65-88
    • /
    • 2016
  • Development of information and communication technology is changing commerce environment and consumer purchasing behavior has also been changed. Globalization is becoming increasingly prevalent in the world today and many factors such as culture, politics, and economics may influence the applicability of management theories. Concurrently, corporate managers are faced with the challenge of offering usable and useful applications to the local users. Besides, many scholars strongly support that the criteria for M-Commerce adoption in developing countries are different from that of developed countries, due to cultural, security, social, political, economic, and technological aspects. This research tried to investigate the differences on the adoption of mobile commerce between developed and developing countries. In this study, the motivation for studying advanced mobile phone services adoption in the South Korea and Viet Nam is presented. Second, M-Commerce adoption model is introduced as a starting point for the research model. We then integrate price, personal innovativeness, quality dimension and perceived of playfulness into our model. Next, we describe our method and report the results of our analysis. The paper concludes with a discussion of the results from both the South Korea and Viet Nam with implications.

FGW-FER: Lightweight Facial Expression Recognition with Attention

  • Huy-Hoang Dinh;Hong-Quan Do;Trung-Tung Doan;Cuong Le;Ngo Xuan Bach;Tu Minh Phuong;Viet-Vu Vu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.9
    • /
    • pp.2505-2528
    • /
    • 2023
  • The field of facial expression recognition (FER) has been actively researched to improve human-computer interaction. In recent years, deep learning techniques have gained popularity for addressing FER, with numerous studies proposing end-to-end frameworks that stack or widen significant convolutional neural network layers. While this has led to improved performance, it has also resulted in larger model sizes and longer inference times. To overcome this challenge, our work introduces a novel lightweight model architecture. The architecture incorporates three key factors: Depth-wise Separable Convolution, Residual Block, and Attention Modules. By doing so, we aim to strike a balance between model size, inference speed, and accuracy in FER tasks. Through extensive experimentation on popular benchmark FER datasets, our proposed method has demonstrated promising results. Notably, it stands out due to its substantial reduction in parameter count and faster inference time, while maintaining accuracy levels comparable to other lightweight models discussed in the existing literature.

An interpretable machine learning approach for forecasting personal heat strain considering the cumulative effect of heat exposure

  • Seo, Seungwon;Choi, Yujin;Koo, Choongwan
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.6
    • /
    • pp.81-90
    • /
    • 2023
  • Climate change has resulted in increased frequency and intensity of heat waves, which poses a significant threat to the health and safety of construction workers, particularly those engaged in labor-intensive and heat-stress vulnerable working environments. To address this challenge, this study aimed to propose an interpretable machine learning approach for forecasting personal heat strain by considering the cumulative effect of heat exposure as a situational variable, which has not been taken into account in the existing approach. As a result, the proposed model, which incorporated the cumulative working time along with environmental and personal variables, was found to have superior forecast performance and explanatory power. Specifically, the proposed Multi-Layer Perceptron (MLP) model achieved a Mean Absolute Error (MAE) of 0.034 (℃) and an R-squared of 99.3% (0.933). Feature importance analysis revealed that the cumulative working time, as a situational variable, had the most significant impact on personal heat strain. These findings highlight the importance of systematic management of personal heat strain at construction sites by comprehensively considering the cumulative working time as a situational variable as well as environmental and personal variables. This study provided a valuable contribution to the construction industry by offering a reliable and accurate heat strain forecasting model, enhancing the health and safety of construction workers.

An Image-to-Image Translation GAN Model for Dental Prothesis Design (치아 보철물 디자인을 위한 이미지 대 이미지 변환 GAN 모델)

  • Tae-Min Kim;Jae-Gon Kim
    • Journal of Information Technology Services
    • /
    • v.22 no.5
    • /
    • pp.87-98
    • /
    • 2023
  • Traditionally, tooth restoration has been carried out by replicating teeth using plaster-based materials. However, recent technological advances have simplified the production process through the introduction of computer-aided design(CAD) systems. Nevertheless, dental restoration varies among individuals, and the skill level of dental technicians significantly influences the accuracy of the manufacturing process. To address this challenge, this paper proposes an approach to designing personalized tooth restorations using Generative Adversarial Network(GAN), a widely adopted technique in computer vision. The primary objective of this model is to create customized dental prosthesis for each patient by utilizing 3D data of the specific teeth to be treated and their corresponding opposite tooth. To achieve this, the 3D dental data is converted into a depth map format and used as input data for the GAN model. The proposed model leverages the network architecture of Pixel2Style2Pixel, which has demonstrated superior performance compared to existing models for image conversion and dental prosthesis generation. Furthermore, this approach holds promising potential for future advancements in dental and implant production.

An Interpretable Bearing Fault Diagnosis Model Based on Hierarchical Belief Rule Base

  • Boying Zhao;Yuanyuan Qu;Mengliang Mu;Bing Xu;Wei He
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.5
    • /
    • pp.1186-1207
    • /
    • 2024
  • Bearings are one of the main components of mechanical equipment and one of the primary components prone to faults. Therefore, conducting fault diagnosis on bearings is a key issue in mechanical equipment research. Belief rule base (BRB) is essentially an expert system that effectively integrates qualitative and quantitative information, demonstrating excellent performance in fault diagnosis. However, class imbalance often occurs in the diagnosis task, which poses challenges to the diagnosis. Models with interpretability can enhance decision-makers' trust in the output results. However, the randomness in the optimization process can undermine interpretability, thereby reducing the level of trustworthiness in the results. Therefore, a hierarchical BRB model based on extreme gradient boosting (XGBoost) feature selection with interpretability (HFS-IBRB) is proposed in this paper. Utilizing a main BRB alongside multiple sub-BRBs allows for the conversion of a multi-classification challenge into several distinct binary classification tasks, thereby leading to enhanced accuracy. By incorporating interpretability constraints into the model, interpretability is effectively ensured. Finally, the case study of the actual dataset of bearing fault diagnosis demonstrates the ability of the HFS-IBRB model to perform accurate and interpretable diagnosis.

A label-free high precision automated crack detection method based on unsupervised generative attentional networks and swin-crackformer

  • Shiqiao Meng;Lezhi Gu;Ying Zhou;Abouzar Jafari
    • Smart Structures and Systems
    • /
    • v.33 no.6
    • /
    • pp.449-463
    • /
    • 2024
  • Automated crack detection is crucial for structural health monitoring and post-earthquake rapid damage detection. However, realizing high precision automatic crack detection in the absence of corresponding manual labeling presents a formidable challenge. This paper presents a novel crack segmentation transfer learning method and a novel crack segmentation model called Swin-CrackFormer. The proposed method facilitates efficient crack image style transfer through a meticulously designed data preprocessing technique, followed by the utilization of a GAN model for image style transfer. Moreover, the proposed Swin-CrackFormer combines the advantages of Transformer and convolution operations to achieve effective local and global feature extraction. To verify the effectiveness of the proposed method, this study validates the proposed method on three unlabeled crack datasets and evaluates the Swin-CrackFormer model on the METU dataset. Experimental results demonstrate that the crack transfer learning method significantly improves the crack segmentation performance on unlabeled crack datasets. Moreover, the Swin-CrackFormer model achieved the best detection result on the METU dataset, surpassing existing crack segmentation models.

Integration of WFST Language Model in Pre-trained Korean E2E ASR Model

  • Junseok Oh;Eunsoo Cho;Ji-Hwan Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.6
    • /
    • pp.1692-1705
    • /
    • 2024
  • In this paper, we present a method that integrates a Grammar Transducer as an external language model to enhance the accuracy of the pre-trained Korean End-to-end (E2E) Automatic Speech Recognition (ASR) model. The E2E ASR model utilizes the Connectionist Temporal Classification (CTC) loss function to derive hypothesis sentences from input audio. However, this method reveals a limitation inherent in the CTC approach, as it fails to capture language information from transcript data directly. To overcome this limitation, we propose a fusion approach that combines a clause-level n-gram language model, transformed into a Weighted Finite-State Transducer (WFST), with the E2E ASR model. This approach enhances the model's accuracy and allows for domain adaptation using just additional text data, avoiding the need for further intensive training of the extensive pre-trained ASR model. This is particularly advantageous for Korean, characterized as a low-resource language, which confronts a significant challenge due to limited resources of speech data and available ASR models. Initially, we validate the efficacy of training the n-gram model at the clause-level by contrasting its inference accuracy with that of the E2E ASR model when merged with language models trained on smaller lexical units. We then demonstrate that our approach achieves enhanced domain adaptation accuracy compared to Shallow Fusion, a previously devised method for merging an external language model with an E2E ASR model without necessitating additional training.