• Title/Summary/Keyword: cerium ammonium nitrate

Search Result 14, Processing Time 0.019 seconds

Synthesis and luminescence characteristics of nano-sized YAG : Ce phosphors by homogeneous precipitation method (Homogeneous precipitation method를 통한 나노 YAG : Ce 형광체 합성과 광학 특성)

  • Lee, Chul Woo;Kwon, Seok Bin;Ji, Eun Kyung;Song, Young Hyun;Jeong, Byung Woo;Kim, Eun Young;Jung, Mong Kwon;Yoon, Dae-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.1
    • /
    • pp.18-21
    • /
    • 2017
  • In this study, spherical monodispersed cerium-doped yttrium aluminum garnet (YAG : $Ce^{3+}$) phosphor particles were synthesized via homogeneous precipitation method using the mixed solution of yttrium nitrate, cerium nitrate, aluminum nitrate, ammonium aluminum sulfate, and urea as a precipitant. During the process of precursors of monodispersed YAG : $Ce^{3+}$, aluminum ions which form spherical aluminum compounds precipitated first and yttrium compounds precipitated onto the surface of the existing spherical aluminum compounds. Drying process using lyophilization could obtain monodispered spherical YAG : $Ce^{3+}$ particles compare to using oven. The thermal calcination process of YAG : $Ce^{3+}$ precursors under the temperature of $1200^{\circ}C$ for 6 h was enough to obtain 400~500 nm sized YAG particles with pure YAG phase.

Synthesis and electrochemical characterization of nano structure $CeO_2$ (나노 구조의 $CeO_2$ 합성과 전기화학적 특성 분석)

  • Cho, Min-Young;Lee, Jae-Won;Park, Sun-Min;Roh, Kwang-Chul;Choi, Heon-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.462-462
    • /
    • 2009
  • $CeO_2$는 고체 산화물 연료전지 (SOFC, soild oxide fuel cell)의 전해질 재료와 CMP(Chemical Mechanical Polishing) 슬러리 재료, 자동차의 3원 촉매, gas sensor, UV absorbent등 여러 분야에서 사용되고 있다. 본 연구에서는 위의 활용범위 외에 $CeO_2$의 구조적 안정성과 빠른 $Ce^{3+}/Ce^{4+}$의 전환 특성을 이용하여 lithium ion battery의 anode 재료로서 전기화학적 특성을 알아보고자 실험을 실시하였다. $CeO_2$ 합성에 사용되는 전구체인 cerium carbonate의 형상 및 크기, 비표면적과 같은 물리화학적 특성이 $CeO_2$ 분말의 특성에 직접적인 영향을 주기 때문에 전구체의 합성 단계에서 입자의 특성을 조절하였다. 전구체 합성의 출발원료로 cerium nitrate hexahydrate 와 ammonium carbonate를 사용하였고 반응온도 및 농도 등을 변화시켜 입자의 형상 및 결정상을 fiber형태의 orthorombic $Ce_2O(CO_3)_2{\cdot}H_2O$와 구형의 hexagonal $CeCO_3OH$의 세리아 전구체를 합성하였다. 이를 $300^{\circ}C$에서 30분 동안 하소하여 전구체의 입자형상을 유지하는 cubic $CeO_2$를 합성하고 X-ray diffraction, FE-SEM, micropore physisorption analyzer 분석을 통하여 입자의 결정상과 형상, 비표면적 등을 비교 분석하고 $Li/CeO_2$ couple의 충,방전 용량과 수명특성을 비교 분석하여 $CeO_2$의 전기화학적 특성을 알아보았다.

  • PDF

Sorption Behavior of Cesium-137, Cerium-144 and Cobalt-60 on Zeolites (제오라이트에 대한 세슘-137, 세슘-144 및 코발트-60 흡착거동)

  • Kim, Seok-Chul;Lee, Byung-Hun
    • Journal of Radiation Protection and Research
    • /
    • v.10 no.1
    • /
    • pp.3-13
    • /
    • 1985
  • The sorption behavior of some typical fission products such as Cs-137, long-lived radionuclide; Ce-144, rare-earth element; and Co-60, corrosion product on zeolite A, zeolite F-9 (faujasite) and amorphous zeolite was determined with the salt concentrations, 0.01 M- to 2.0 M- nitric acid and ammonium nitrate, and the shaking time, 15 minutes interval from 15 minute to 90 minute. Kd values were obtained through the batch experiment. In conclusion, the optimal conditions for isolation and removal of the typical radionuclides are as following: zeolite, amorphous zeolite; concentration, $0.01\;M-HNO_3\;and\;0.1\;M-NH_4NO_3$; pH4; shaking time, one hour; the most effective species, Cs-137.

  • PDF

Effects of Chemical and Abrasive Particles for the Removal Rate and Surface Microroughness in Ruthenium CMP (Ru CMP 공정에서의 화학액과 연마 입자 농도에 따른 연마율과 표면 특성)

  • Lee, Sang-Ho;Kang, Young-Jea;Park, Jin-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1296-1299
    • /
    • 2004
  • MIM capacitor has been investigated for the next generation DRAM. Conventional poly-Si bottom electrode cannot satisfy the requirement of electrical properties and comparability to the high k materials. New bottom electrode material such as ruthenium has been suggested in the fabrication of MIM structure capacitor. However, the ruthenium has to be planarized due to the backend scalability. For the planarization CMP has been widely used in the manufacture of integrated circuit. In this research, ruthenium thin film was Polished by CMP with cerium ammonium nitrate (CAN)base slurry. HNO3 was added on the CAN solution as an additive. In the various concentration of chemical and alumina abrasive, ruthenium surface was etched and polished. After static etching and polishing, etching and removal rate was investigated. Also microroughness of surface was observed by AFM. The etching and removal rate depended on the concentration of CAN, and HNO3 accelerated the etching and polishing of ruthenium. The reasonable removal rate and microroughness of surface was achieved in the 1wt% alumina slurry.

  • PDF