• Title/Summary/Keyword: cerebral ischemic

Search Result 596, Processing Time 0.034 seconds

Coffee Consumption as a Risk Factor of Ischemic Cerebral Infarction in Koreans

  • Sun, Seung-Ho
    • The Journal of Korean Medicine
    • /
    • v.28 no.4
    • /
    • pp.42-51
    • /
    • 2007
  • Background and Purpose : To prevent ischemic cerebral infarction, it is very important to reduce risk factors which might cause stroke. However, the relationship of coffee consumption with ischemic cerebral infarction still remains unclear. The purpose of this study was to investigate the effects of coffee consumption on the risk of ischemic cerebral infarction in Koreans. Methods : A case-control study was conducted from April 1, 2001 to July 31, 2004. Cases (n=435) of first incident ischemic cerebral infarction were enrolled and were mostly matched by age to stroke-free hospital controls (n=407). All subjects were interviewed, examined and had anthropometric measurements by using an organized questionnaire. The coffee consumption was classified by the average frequency of intake, being none, 1 cup/day, 2-4 cups/day, more than 5 cups/day. Odds ratios (ORs) of ischemic cerebral infarction were proved multivariate analysis after adjustment for demographic factors, diet factors, and vascular risk factors. Results : When adjusted for sex, age, and other factors, coffee consumption and stroke do not have a significant association. (${\leq}$ cup/day OR=1.035, 95% CI=0.880-2.756; 2-4cups/day OR=1.452, 95% CI=0.864-2.440; ${\geq}$ 5 cups/day OR=1.557, 95% CI=0.705-3.435) Conclusions : In this study, we conclude that coffee consumption is not an important risk factor of ischemic cerebral infarction in Koreans. Prospective and cohort study on the relation between coffee consumption and the possibility of inducing ischemic cerebral infarctions in Koreans will be required in the future.

  • PDF

Effects of Samul-tang-gamibang against Focal Cerebral Ischemic Damage by Middle Cerebral Artery Occulusion of Rats (사물탕가미방이 백서의 좌우 중대뇌 동맥 폐쇄에 의한 뇌허혈 손상의 회복에 미치는 효과)

  • 서창훈;김영균;권정남
    • The Journal of Korean Medicine
    • /
    • v.25 no.1
    • /
    • pp.117-128
    • /
    • 2004
  • Objectives : This research was performed to investigate effect of Samul-tang-gamibang against focal cerebral ischemic damage after middle cerebral artery occlusion(MCAO). Methods : This research was used rats which were against focal cerebral ischemic damage by MCAO. It was used Zea Longa's theory and Belayev's methods to give rise to focal cerebral ischemic damage by MCAO. After 7days later, we drew out the brain and then had frozen and dyeing it and we had taken a picture to measure of the damaged area in each brain section. We determined the Neurological Index and tested the Foot-fault test and Roatated test to appraise the fall of motion ability result from cerebral ischemic damage. Results : The results of the experiment are as follows. 1. Samul-tang-gamibang reduced infarct size of sample group compared to control group at 7 day after MCAO. 2. Samul-tang-gamibang reduced infarct volume of sample group compared to control group at 7 day after MCAO. 3. Samul-tang-gamibang reduced foot-fault index of sample group compared to control group at 5,7 day after MCAO. Conclusions : Samul-tang-gamibang has protective effects against ischemic brain damage and had significant reduced infarct size and infarct volume of Rt-MCAO.

  • PDF

Effects of GR89696 on parvalbumin positive neurons after cerebral ischemia in the Mongolian gerbil (몽고리안 저빌에서 뇌허혈시 GR89696이 parvalbumin 발현 신경세포에 미치는 영향)

  • Kwon, Young-bae;Yang, Il-suk;Lee, Jang-hern
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.1
    • /
    • pp.34-44
    • /
    • 1999
  • Ischemic damage in the selectively vulnerable populations of neurons is thought to be caused by an abnormal accumulation of intracellular calcium. It has been reported that the neurons, expressing specific calcium binding proteins, might effectively control intracellular calcium concentrations because of a high capacity to buffer intracellular calcium in the brain ischemic condition. It is uncertain that parvalbumin, one of the calcium binding proteins, can protect the neurons from the cerebral ischemic damage. Recently, treatment of kappa opioid agonists increased survival rate, improved neurological function, and decreased tissue damage under the cerebral ischemic condition. Many evidences indicate that these therapeutic effects might result from regulation of calcium concentration. This study was designed to analyze the changes of number in parvalbumin-positive neurons after cerebral ischemic damage according to timepoints after cerebral ischemic induction. In addition, we evaluated the effect of GR89696 (kappa opioid agonist) or naltrexone(non selective opioid antagonist) on the changes of number in parvalbumin expressing neurons under ischemic condition. Cerebral ischemia was induced by occluding the common carotid artery of experimental animals. The hippocampal areas were morphometrically analyzed at different time point after ischemic induction(1, 3, 5 days) by using immuno-histochemical technique and imaging analysis system. The number of parvalbumin-positive neurons in hippocampus was significantly reduced at 1 day after ischemia(p<0.05). Furthermore, the number of parvalbumin-immunoreactive neurons was dramatically reduced at 3 and 5 days after cerebral ischemic induction(p<0.05) as compared to 1 day group after ischemia, as well as sham control group. Significant reduction of parvalbumin positive neurons in CA1 region of hippocampus was observed at 1 day after cerebral ischemic induction. However, significant loss of MAP2 immunoreactivity was observed at 3 day after cerebral ischemia. The loss of parvalbumin-positive neurons and MAP2 immunoreactivity in CA1 region was prevented by pre-administration of GR89696 compared to that of saline-treated ischemic group. Furthermore, protective effect of GR89696 partially reversed by pre-treatment of naltrexone. These data indicate that parvalbumin-positive neurons more sensitively responded to cerebral ischemic damage than MAP2 protein. Moreover, this loss of parvalbumin-positive neurons was effectively prevented by the pretreatment of kappa opioid agonist. It was also suggested that the changes of number in parvalbumin-positive neurons could be used as the specific marker to analyze the degree of ischemic neuronal damage.

  • PDF

The Effects of Perpendicular Needling Laogong ($PC_8$) on the Improvement of Cerebral Hemodynamics in Rats (노궁(勞宮)($PC_8$) 직자(直刺)가 백서(白鼠)의 뇌혈류력학(腦血流力學)에 미치는 영향)

  • Heo, Jin;Kim, Jung-Ho;Kim, Young-Il
    • Journal of Acupuncture Research
    • /
    • v.28 no.4
    • /
    • pp.19-35
    • /
    • 2011
  • Objectives : This study was designed to investigate the effects of acupuncturing $PC_8$ used perpendicular needling method determine the mechanism of action of acupuncturing $PC_8$ by measuring the changes of regional cerebral blood flow (rCBF) and mean arterial blood pressure (MABP) in normal rats. Methods : This study also investigated the effects of acupuncturing $PC_8$ on the change of rCBF in cerebral ischemic rats, and revealed the mechanism of its action. In addition, the effects of acupuncturing $PC_8$ on focal ischemic brain injury was studied in cerebral ischemic rats. Results : 1. Acupuncturing $PC_8$ significantly increase rCBF but decreased MABP in normal rats. 2. Acupuncturing $PC_8$ increased of rCBF was significantly inhibited by pretreatment with indomethacin (1mg/kg, i.p.), an inhibitor of cyclooxygenase in normal rats. 3. Acupuncturing $PC_8$ increased of rCBF was significantly inhibited by pretreatment methylene blue (10 ${\mu}g$/kg, i.p.), an inhibitor of guanylate cyclase in normal rats. 4. Acupuncturing $PC_8$ was significantly improved the rCBF than control group increased unstable in cerebral ischemic rats. 5. Acupuncturing $PC_8$ was not significantly improved the rCBF than control group by pretreatment with indomethacin (1mg/kg, i.p.), an inhibitor of cyclooxygenase in cerebral ischemic rats. 6. Acupuncturing $PC_8$ was significantly increased the rCBF than control group by pretreatment methylene blue ($10{\mu}g$/kg, i.p.), an inhibitor of guanylate cyclase in cerebral ischemic rats. Conclusions : In conclusion, our study suggested that acupuncturing $PC_8$ can increase rCBF in normal state, and improve stability of rCBF in ischemic state. In addition, we suggested that mechanisms related with acupuncturing $PC_8$ was involved in the guanylate cyclase pathway.

Cerebral Postischemic Hyperperfusion in PET and SPECT (PET과 SPECT에서 나타나는 뇌허혈후 과관류)

  • Cho, Ihn-Ho
    • The Korean Journal of Nuclear Medicine
    • /
    • v.35 no.6
    • /
    • pp.343-351
    • /
    • 2001
  • Cerebral post-ischemic hyperperfusion has been observed at the acute and subacute periods of ischemic stroke. In the animal stroke model, early post-ischemic hyperperfusion is the mark of recanalization of the occluded artery with reperfusion. In the PET studios of both humans and experimental animals, early post-ischemic hyperperfusion is not a key factor in the development of tissue infarction and indicates the spontaneous reperfusion of the ischemic brain tissue without late infarction or with small infarction. But late post-ischemic hyperperfusion shows the worse prognosis with reperfusion injury associated with brain tissue necrosis. Early post-ischemic hyperperfusion defined by PET and SPECT may be useful in predicting the prognosis of ischemic stroke and the effect of thrombolytic therapy.

  • PDF

Comparison of Cerebral Cortex Transcriptome Profiles in Ischemic Stroke and Alzheimer's Disease Models

  • Juhyun Song
    • Clinical Nutrition Research
    • /
    • v.11 no.3
    • /
    • pp.159-170
    • /
    • 2022
  • Ischemic stroke and Alzheimer's disease (AD) are representative geriatric diseases with a rapidly increasing prevalence worldwide. Recent studies have reported an association between ischemic stroke neuropathology and AD neuropathology. Ischemic stroke shares some similar characteristics with AD, such as glia activation-induced neuroinflammation, amyloid beta accumulation, and neuronal cell loss, as well as some common risk factors with AD progression. Although there are considerable similarities in neuropathology between ischemic stroke and AD, no studies have ever compared specific genetic changes of brain cortex between ischemic stroke and AD. Therefore, in this study, I compared the cerebral cortex transcriptome profile of 5xFAD mice, an AD mouse model, with those of middle cerebral artery occlusion (MCAO) mice, an ischemic stroke mouse model. The data showed that the expression of many genes with important functional implications in MCAO mouse brain cortex were related to synaptic dysfunction and neuronal cell death in 5xFAD mouse model. In addition, changes in various protein-coding RNAs involved in synaptic plasticity, amyloid beta accumulation, neurogenesis, neuronal differentiation, glial activation, inflammation and neurite outgrowth were observed. The findings could serve as an important basis for further studies to elucidate the pathophysiology of AD in patients with ischemic stroke.

Experimental Analysis in the Reversible and Irreversible Cerebral Ischemic Models in the Rat (백서의 가역성 및 비가역성 뇌허혈 모형의 실험적 고찰)

  • Song, Kwang Chul;Choi, Byung Yon;Kim, Seong Ho;Bae, Jang Ho;Kim, Oh Lyong;Cho, Soo Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.7
    • /
    • pp.853-860
    • /
    • 2000
  • Objective : The purpose of our experimental study was to analysis the advantages and disadvantages in the reversible and irreversible cerebral ischemic models with rats by staining with Neutral Red(NR) solusion, 2% 2,3,5-triphenyltetrazolium chloride(TTC) and Hematoxylin & Eosin(H & E). Methods : We have measured the range of cerebral infarction in the rat to get a suitable ischemic model along the object of study with and without craniectomy. With craniectomy, 9 rats were sacrificed for irreversible cerebral ischemic model by means of ligation at proximal(group I) and distal(group II), and coagulation at proximal(group III) middle cerebral artery. Also, 6 rats were sacrificed for irreversible(group IV) and reversible(group V) cerebral ischemic model using nylon thread without craniectomy. The sizes of infarction were measured by staining the coronal sections of the brain with NR solusion, TTC and H & E. Results : There are no difference of physiological parameters comparing the each group. Cerebral infarction was not observed in group II, but it's volume was largest in group IV. Disadvantages of craniectomy group(I, II, III) are the long duration of operation and cortical damage by procedure. It's advantage is confirmation of the middle cerebral artery occlusion and cessation of blood flow through the operative microscope. In case of ischemic models using nylon thread (group IV, V), it is hard to identify the interruption or recirculation of blood flow through the middle cerebral artery, but the advantage is the simplicity of operative technique which reduces the operation time and minimizes the cerebral damage due to craniectomy. Therefore, it seems important to set up the reversible and irreversible ischemic models by carefully considering advantages and disadvantages listed above. Conclusion : TTC staining seems to be effective since it reflects the histological damage sufficiently and quickly. It is hoped that researches focused on ischemic penumbra, which became popular recently, will be further carried on with use of NR staining, optical microscope and electron microscope.

  • PDF

Differential Expression Patterns of Gangliosides in the Ischemic Cerebral Cortex Produced by Middle Cerebral Artery Occlusion

  • Kwak, Dong Hoon;Kim, Sung Min;Lee, Dea Hoon;Kim, Ji Su;Kim, Sun Mi;Lee, Seo Ul;Jung, Kyu Yong;Seo, Byoung Boo;Choo, Young Kug
    • Molecules and Cells
    • /
    • v.20 no.3
    • /
    • pp.354-360
    • /
    • 2005
  • Neuronal damage subsequent to transient cerebral ischemia is a multifactorial process involving several overlapping mechanisms. Gangliosides, sialic acid-conjugated glycosphingolipids, reduce the severity of acute brain damage in vitro. However their in vivo effects on the cerebral cortex damaged by ischemic infarct are unknown. To assess the possible protective role of gangliosides we examined their expression in the cerebral cortex damaged by ischemic infarct in the rat. Ischemia was induced by middle cerebral artery (MCA) occlusion, and the resulting damage was observed by staining with 2, 3, 5-triphenylterazolium chloride (TTC). High-performance thin-layer chromatography (HPTLC) showed that gangliosides GM3 and GM1 increased in the damaged cerebral cortex, and immunofluorescence microscopy also revealed a significant change in expression of GM1. In addition, in situ hybridization demonstrated an increase in the mRNA for ganglioside GM3 synthase. These results suggest that gangliosides GM1 and GM3 may be synthesized in vivo to protect the cerebral cortex from ischemic damage.

Gene Transfer of Cu/ZnSOD to Cerebral Vessels Prevents Subarachnoid Hemorrhage-induced Cerebral Vasospasm

  • Yun, Mi-Ran;Kim, Dong-Eun;Heo, Hye-Jin;Park, Ji-Young;Lee, Ji-Young;Bae, Sun-Sik;Kim, Chi-Dae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.6
    • /
    • pp.327-332
    • /
    • 2005
  • The preventive effects of gene transfer of human copper/zinc superoxide dismutase (Cu/ZnSOD) on the development of cerebral vasospasm after subarachnoid hemorrhage (SAH) were examined usin a rat model of SAH. An experimental SAH was produced by injecting autologous arterial blood twice into the cisterna magna, and the changes in the diameter of the middle cerebral artery (MCA) were measured. Rats subjected to SAH exhibited a decreased diameter with an increased wall thickness of MCA that were significantly ameliorated by pretreatment with diphenyleneiodonium (DPI, $10{\mu}M$), an inhibitor of NAD(P)H oxidase. Furthermore, application of recombinant adenovirus ($100{\mu}l$ of $1{\times}10^{10}$ pfu/ml, intracisternally), which encodes human Cu/ZnSOD, 3 days before SAH prevented the development of SAH-induced vasospasm. Our findings demonstrate that SAH-induced cerebral vasospasm is closely related with NAD(P)H oxidase-derived reactive oxygen species, and these alterations can be prevented by the recombinant adenovirus-mediated transfer of human Cu/ZnSOD gene to the cerebral vasculature.

Effect of Chengsimyeunja-eum (淸心蓮子飮) and Sunghyangjungi-san (星香正氣散) on Streptozotocin-induced Ischemic Damaged Diabetic Rats (청심연자음(淸心蓮子飮)과 성향정기산(星香正氣散)이 Streptozotocin유발(誘發) 당뇨(糖尿)흰쥐의 뇌허혈 손상(腦虛血 損傷)에 미치는 영향(影響))

  • Park, Soon-Il;Lee, Won-Chul
    • The Journal of Korean Medicine
    • /
    • v.28 no.3 s.71
    • /
    • pp.216-231
    • /
    • 2007
  • Objectives : Chengsimyeunja-eum and Sunghyangjungi-san are prescriptions used for cerebral infarction clinically; it is known that these formulas reduce ischemic damage. According to previous research data, controlling certain types of glucose is considered to decrease the risk of cerebral infarction. Based on this fact, we investigated the effects of Chengsimyeunja-eum and Sunghyangjungi-san extracts on reperfusion following ischemic damage to diabetic rats, the change of c-FOS and Bax positive neurons in the hippocampus and cerebral cortex and protein through immunohistochemical methods, changes of serum glucose level, serum triglyceride level, and hepatic glucokinase activity. Methods : We induced ischemic damaged in diabetic rats, and the rats were administered Chengsimyeunja-eum and Sunghyangjungi-san extracts. Results : Chengsimyeunja-eum demonstrated significant decrease of c-Fos positive neurons in both hippocampus and cerebral cortex as well as a significant decrease of Bax positive neurons in hippocampus after ischemic damage on diabetic rats and decrease of serum glucose level after ischemic damage on diabetic rats. Sunghyangjungi-san demonstrated significant decreases of c-Fos and Bax positive neurons in both hippocampus and cerebral cortex after ischemic damage on diabetic rats. Conclusions : Chengsimyeunja-eum, effect on glucose level control, has a remarkable effect of protection of neurons not effective on glucose level. Sunghyangjungi-san showed neuroprotective effect through preventing neuronal cell death.

  • PDF