• 제목/요약/키워드: cerebral ischemia/reperfusion injury

검색결과 51건 처리시간 0.024초

상경부교감신경절블록이 백서의 국소 뇌허혈/재관류로 인한 뇌 손상에 미치는 영향 (Effect of Superior Cervical Sympathetic Ganglion Block on Brain Injury Induced by Focal Cerebral Ischemia/Reperfusion in a Rat Model)

  • 이애령;윤미옥;김현혜;최재문;전혜영;신진우;임정길
    • The Korean Journal of Pain
    • /
    • 제20권2호
    • /
    • pp.83-91
    • /
    • 2007
  • Background: Cerebral blood vessels are innervated by sympathetic nerves that originate in the superior cervical ganglia (SCG). This study was conducted to determine the effect of an SCG block on brain injury caused by focal cerebral ischemia/reperfusion in a rat model. Methods: Male Sprague-Dawley rats (270-320 g) were randomly assigned to one of three groups (lidocaine, ropivacaine, and control). After brain injury induced by middle cerebral artery (MCA) occlusion/reperfusion, the animals were administered an SCG bloc that consisted of $30{\mu}l$ of 2% lidocaine or 0.75% ropivacaine, with the exception of animals in the control group, which received no treatment. Twenty four hours after brain injury was induced, neurologic scores were assessed and brain samples were collected. The infarct and edema ratios were measured, and DNA fragmented cells were counted in the frontoparietal cortex and the caudoputamen. Results: No significant differences in neurologic scores or edema ratios were observed among the three groups. However, the infarct ratio was significantly lower in the ropivacaine group than in the control group (P < 0.05), and the number of necrotic cells in the caudoputamen of the ropivacaine group was significantly lower than in the control group (P < 0.01). Additionally, the number of necrotic and apoptotic cells in theropivacaine group were significantly lower than inthe control group in both the caudoputamen and the frontoparietal cortex (P < 0.05). Conclusions: Brain injury induced by focal cerebral ischemia/reperfusion was reduced by an SCG block using local anesthetics. This finding suggests that a cervical sympathetic block could be considered as another treatment option for the treatment of cerebral vascular diseases.

Involvement of Cortical Damage in the Ischemia/Reperfusion-Induced Memory Impairment of Wistar Rats

  • Hong, Jin-Tae;Ryu, Seung-Rel;Kim, Hye-Jin;Lee, Sun-Hee;Lee, Byung-Moo;Kim, Pu-Young
    • Archives of Pharmacal Research
    • /
    • 제23권4호
    • /
    • pp.413-417
    • /
    • 2000
  • The effect of ischemia/reperfusion-induced neuronal damage on the memory impairment were investigated using active avoidance and Morris water maze tasks in Wistar rats. Focal ischemia was induced by 1 h occlusion of the right middle cerebral artery (MCA) of Wistar male rats. Reperfusion was induced by releasing the occlusion and restoring the blood circulation for 24 h. The acquisition and preservation memory tested by active avoidance showed a significant difference between the sham and ischemia/reperfusion group. The water maze acquisition performance was also significant difference between sham and ischemia/repefusion groups in both latency and moving distance. The infarction volume was increased by the ischemia/reperfusion. Furthermore, the cresyl violet staining of the ischemia/reperfusion brain showed severe neuronal damage (pyramidal cell loss) in the cortex in addition to the striatum lesion of brain. This study shows that pyramidal cell damage in the cortex lesion may be partially related to memorial disturbance in the ischemia/reperfusion brain injury.

  • PDF

백서의 가역성 뇌허혈 모형에서 저체온의 효과와 적용시기 (The Time and Effect of Hypothermia in Early Stage of the Reversible Cerebral Focal Ischemic Model of Rat)

  • 최병연;정병우;송광철;박진한;김성호;배장호;김오룡;조수호;김승래
    • Journal of Korean Neurosurgical Society
    • /
    • 제29권2호
    • /
    • pp.167-179
    • /
    • 2000
  • Objective : We studied to clarify the effective time zone of mild hypothermic neural protection during ischemia and/or reperfusion after middle cerebral artery occlusion. Methods : In a reversible cerebral infarct model which maintained reperfusion of blood flow after middle cerebral artery occlusion for two hours, the size of cerebral infarction, cerebral edema and the extent of neurological deficit were observed and analyzed for comparison between the control and the experimental groups under hypothermia($33.5^{\circ}C$). The temporalis muscle temperature was reduced to $33.5^{\circ}C$ by surface cooling for two hours during middle cerebral artery occlusion for study group I. The following groups applied hypothermia for two-hour periods after reperfusion : group II(0-2 hours), group III(2-4 hours), and group IV(4-6 hours). They were rewarmed to $36.5^{\circ}C$ until sacrified at 2, 4, 6, 12, and 24 hours after reperfusion. Control group was maintained at normothermia without hypothermia. Results : In the experimental groups with hypothermia, the average value of the size of cerebral infarction($mean{\pm}SD$) was $1.97{\pm}1.65%$, which was a remarkable reduction over that of the control, $4.93{\pm}3.79%$. In the control, a progressive increase was shown in the size of infarction from point of reperfusion to 6 hours after reperfusion without further changes in size afterward. Intra-ischemic hypothermia(group I) prevented ischemic injury but did not prevent reperfusion injury. Group II examplified the most neural protective effect in comparison to the control group and group IV(p<0.05). The cortex was more vulnerable to reperfusion injury than the subcortex. Mild hypothermia showed more neural protective effects on the cortex than subcortex. Conclusion : The most appropriate time zone for application of mild hypothermia was defined to be within four hours following reperfusion.

  • PDF

흰쥐에서 우절(藕節) 추출물의 국소 뇌혈류량 조절 효과 (Effect of Nodus Nelumbinis Rhizomatis Extract on the Regulation of Regional Cerebral Blood Flow in Rats)

  • 김영균;권미정;조수인
    • 대한본초학회지
    • /
    • 제20권3호
    • /
    • pp.75-81
    • /
    • 2005
  • Objectives : In brain disorders such as ischemic stroke, the final outcome depends largely on the duration and the degree of the ischemia as well as the susceptibility of various cell types in the affected brain region. In the present study, the effects of Nodus Nelumbinis Rhizomatis Extract(NNRe) were tested for the anti-oxidative action of rCBF. Methods : Regional cerebral blood flow(rCBF) were determined by LDF methods. LDF allows for real time, noninvasive, continuous recordings of local CBF. The LDF method has been widely used to trace hemodynamic changes in the superficial or the deep brain structures in experimental stroke research. Results : NNRe treatment showed no change on rCBF in methylene blue, ODQ and L-NNA pretreated rats. 120 minutes of MCAO and followed reperfusion, 0.1% concentration of NNR treatment improved the altered cerebral hemodynamics of cerebral ischemic by increasing rCBF. Conclusions : The ischemia/reperfusion induced oxidative stress may have contributed to cerebral damage in rats, and the present study provides clear evidences for the beneficial effect of NNR on ischemia/reperfusion induced brain injury.

  • PDF

Neuroprotective Effects of Ginkgo biloba extract, GBB, in the Transient Ischemic Rat Model

  • Oh, Jin-Kyung;Jung, Ji-Wook;Oh, Hye-Rim;Han, Yong-Nam;Ryu, Jong-Hoon
    • Biomolecules & Therapeutics
    • /
    • 제15권3호
    • /
    • pp.169-174
    • /
    • 2007
  • In the present study, we investigated the neuroprotective effects of standardized Ginkgo biloba extract (GBB) (total terpene trilactones, 13 ${\pm}$ 3%; biflavone, 4.5 ${\pm}$ 1.5%; flavonol glycoside, < 8%; proanthocyanidine, under detection limit) on ischemia-reperfusion-induced brain injury in the rats. Ischemia was induced by the intraluminal occlusion of the right middle cerebral artery for 2 h and reperfusion was continued for 22 h. GBB was orally administered, promptly prior to reperfusion and 2 h after. Total infarction volume in the ipsilateral hemispheres of ischemia-reperfusion rats were significantly reduced by treatment with GBB in a dose-dependent manner (P<0.05). The therapeutic time window of GBB was 3 h in this ischemia-reperfusion rat model. Furthermore, GBB also significantly inhibited increased neutrophil infiltration of ischemic brain tissue, as estimated by myeloperoxidase activity. These findings suggest that GBB plays a crucial protective role in ischemia-induced brain injury, in part, via inhibition of neutrophil infiltration, and suggest that this GBB could serve as a neuroprotective agent following transient focal ischemic brain injury.

허혈/재관류 세포 손상에서 청폐사간탕의 보호 효과 (Protective effects of Chungpesagan-tang against ischemia/reperfusion induced cell injury)

  • 홍성길;강봉주;김윤진;강성모;조동욱
    • 한국한의학연구원논문집
    • /
    • 제5권1호
    • /
    • pp.111-117
    • /
    • 1999
  • 세포열을 이용한 허혈/재관류 환경에서 청폐사간탕의 세포보호능을 측정하였다. 청폐사간탕 추출물은 허혈/재관류 환경하에서 발생하는 세포 독성으로부터 대표적 수용성 항산화제인 ascorbic acid보다 높은 세포 보호 활성을 나타내었으며, 산화적 손상의 지표로서 사용되는 지질과산화물(TBARS)를 측정한 결과에서도 ASA와 유사한 활성을 나타내었다. 또한, 허혈/재관류 환경하에서 활성이 증가하여 세포에 산화적 손상을 일으키는 활성 산소종을 유발하는 것으로 알려진 xanthine oxidase 활성 측정에서는 청폐사간탕이 ASA보도 높은 xanthine oxidase 활성 억제능을 보였으며, xanthine oxidase 효소 표품을 이용한 활성 억제능 측정에서도 ASA보다 뛰어난 결과를 보였다. 따라서, 청폐사간탕은 허혈/재관류 환경하에서 세포 보호능이 있는 것으로 추측이되며, 이러한 보호능은 항산화 활성과 더불어서 xanthine oxidase 활성 억제능이 공동 작용의 결과로 사료된다.

  • PDF

Ginsenoside Rd alleviates mouse acute renal ischemia/reperfusion injury by modulating macrophage phenotype

  • Ren, Kaixi;Jin, Chao;Ma, Pengfei;Ren, Qinyou;Jia, Zhansheng;Zhu, Daocheng
    • Journal of Ginseng Research
    • /
    • 제40권2호
    • /
    • pp.196-202
    • /
    • 2016
  • Background: Ginsenoside Rd (GSRd), a main component of the root of Panax ginseng, exhibits anti-inflammation functions and decreases infarct size in many injuries and ischemia diseases such as focal cerebral ischemia. M1 Macrophages are regarded as one of the key inflammatory cells having functions for disease progression. Methods: To investigate the effect of GSRd on renal ischemia/reperfusion injury (IRI) and macrophage functional status, and their regulatory role on mouse polarized macrophages in vitro, GSRd (10-100 mg/kg) and vehicle were applied to mice 30 min before renal IRI modeling. Renal functions were reflected by blood serum creatinine and blood urea nitrogen level and histopathological examination. M1 polarized macrophages infiltration was identified by flow cytometry analysis and immunofluorescence staining with $CD11b^+$, $iNOS^+$/interleukin-12/tumor necrosis factor-${\alpha}$ labeling. For the in vitro study, GSRd ($10-100{\mu}g/mL$) and vehicle were added in the culture medium of M1 macrophages to assess their regulatory function on polarization phenotype. Results: In vivo data showed a protective role of GSRd at 50 mg/kg on Day 3. Serum level of serum creatinine and blood urea nitrogen significantly dropped compared with other groups. Reduced renal tissue damage and M1 macrophage infiltration showed on hematoxylin-eosin staining and flow cytometry and immunofluorescence staining confirmed this improvement. With GSRd administration, in vitro cultured M1 macrophages secreted less inflammatory cytokines such as interleukin-12 and tumor necrosis factor-${\alpha}$. Furthermore, macrophage polarization-related pancake-like morphology gradually changed along with increasing concentration of GSRd in the medium. Conclusion: These findings demonstrate that GSRd possess a protective function against renal ischemia/reperfusion injury via downregulating M1 macrophage polarization.

Attenuated Cerebral Ischemic Injury by Polyethylene Glycol-Conjugated Hemoglobin

  • Cho, Geum-Sil;Choi, In-Young;Choi, Yoo-Keum;Kim, Seul-Ki;Cai, Ying;Nho, Kwang;Lee, Jae-Chul
    • Biomolecules & Therapeutics
    • /
    • 제17권3호
    • /
    • pp.270-275
    • /
    • 2009
  • Polyethylene glycol-conjugated hemoglobin (PEG-Hb) has been proposed as a blood substitute for transfusion due to their plasma expansion and oxygen transport capabilities. The protective effect of PEG-Hb on cerebral hypoxic-ischemic injury was investigated in neonatal hypoxia model and adult rat focal cerebral ischemia model. As intravenously administered 30 min before the onset of hypoxia, PEG-Hb markedly protected cerebral hypoxic injury in a neonatal rat hypoxia model. A similar treatment of PEG-Hb largely reduced the ischemic injury ensuing after 2-h middle cerebral artery occlusion followed by 22-h reperfusion. Consistently, neurological disorder was significantly improved by PEG-Hb. The results indicate that the pharmacological blockade of cerebral ischemic injury by using PEG-Hb may provide a useful strategy for the treatment of cerebral stroke.

Neuroprotective Effects of Hydroxyfullerene in Rats Subjected to Global Cerebral Ischemia

  • Kim, Young-Ock;Kim, Hak-Jae;Kim, Su-Kang;Yoon, Bum-Chul
    • Molecular & Cellular Toxicology
    • /
    • 제4권3호
    • /
    • pp.218-223
    • /
    • 2008
  • Oxidative stress is believed to contribute to the neuronal damage induced by cerebral ischemia/reperfusion injury. The present study was undertaken to evaluate the possible antioxidant neuroprotective effect of hydroxyfullerene (a radical absorbing cage molecule) against neuronal death in hippocampal CA1 neurons following transient global cerebral ischemia in the rat. Transient global cerebral ischemia was induced in male Wistar rats by four vessel- occlusion (4VO) for 10 min. Lipid peroxidation in brain tissues was determined by measuring the concentrations of thiobarbituric acid-reactive substances (TBARS). Furthermore, the apoptotic effects of ${H_2}{O_2}$ on PC12 cells were also investigated. Cell viabilities were measured using MTT [3-(4,5-dimethylthiazolyl-2)-2,-5-diphenyltetrazolium bromide] assays. Hydroxyfullerene, when administered to rats at 0.3-3 mg/kg i.p. at 0 and 90 minutes after 4-VO was found to significantly reduce CA1 neuron death by 72.4% on hippocampal CA1 neurons. Our findings suggest that hydroxyfullerene protects neurons from transient global cerebral injury in the rat hippocampus by reducing oxidative stress and lipid peroxidation levels, which contribute to apoptotic cell death.