• Title/Summary/Keyword: cerebellar granule cells

Search Result 44, Processing Time 0.095 seconds

Effects of Chronic Lead Exposure on Glutamate Release and Uptake in Cerebellar Cells of Rat Pups

  • Yi, Eun-Young;Lim, Dong-Koo
    • Archives of Pharmacal Research
    • /
    • v.21 no.2
    • /
    • pp.113-119
    • /
    • 1998
  • Changes in the release and uptake of glutamate in cerebellar granule and glial cells of offspring of lead-exposed mothers were determined. In cultured cerebellar granule cells exposed to lead for 5 days, glutamate release was less influenced upon N-methyl-D-aspartate (NMDA) stimulation than that in the control. Although the NMDA-stimulated release of glutamate in cerebellar granule cells prepared from lead-exposed first generation pups was not different from that of the control group, the S-nitroso-N-acetylpenicillamine (SNAP)-stimulated release of glutamate in cerebellar granule cells obtained from lead-treated pups was less elevated than that in the control. Furthermore, in cerebellar granule cells obtained from lead-exposed second generations pups, glutamate release did not respond to both NMDA and SNAP stimulation. In cerebellar glial cells exposed to lead, the basal glutamate uptake was not changed. However, the L-trans-pyrollidine-2,4-dicarboxylic acid (PDC)-blocking effects was significantly reduced. In glial cells obtained from lead-exposed pups, the glutamate uptake was also less blocked by PDC than that in the control. Further decreases in PDC-blocking effects were observed in cerebellar glial cells obtained from lead-treated second generation pups compared to those from the control group. These results indicate that lead exposure induces the changes in the sensitivities of the glutamate release and uptake transporter. In addition, these results suggest that lead exposure might affect the intracellular signalling pathway and transmission in glutamatergic nervous system.

  • PDF

Subacute Nicotine Exposure in Cultured Cerebellar Cells Increased the Release and Uptake of Glutamate

  • Lim, Dong-Koo;Park, Sun-Hee;Choi, Woo-Jeoung
    • Archives of Pharmacal Research
    • /
    • v.23 no.5
    • /
    • pp.488-494
    • /
    • 2000
  • Cerebellar granule and glial cells prepared from 7 day-old rat pups were used to investigate the effects of sub-acute nicotine exposure on the glutamatergic nervous system. These cells were exposed to nicotine in various concentrations for 2 to 10 days in situ. Nicotine-exposure did not result in any changes in cerebellar granule and glial cell viability at concentrations of up to 500 $\mu\textrm{M}$. In cerebellar granule cells, the basal extracellular levels of glutamate, aspartate and glycine were enhanced in the nicotine-exposed granule cells. In addition, the responses of N-methyl-D-aspartate (NMDA)-induced glutamate release were enhanced at low NMDA concentrations in the nicotine-exposed granule cells. However, this decreased at higher NMDA concentrations. The glutaminase activity was increased after nicotine exposure. In cerebellar glial cells, glutamate uptake in the nicotine-exposed glial cells were either increased at low nicotine exposure levels or decreased at higher levels. The inhibition of glutamate uptake by L-trans-pyrollidine-2,4-dicarboxylic acid (PDC) was lower in glial cells exposed to 50 $\mu\textrm{M}$ nicotine. Glutamine synthetase activity was lower in glial cells exposed to 100 or 500 $\mu\textrm{M}$ of nicotine. These results indicate that the properties of cerebellar granule and glial cells may alter after subacute nicotine exposure. Furthermore, they suggest that nicotine exposure during development may modulate glutamatergic nervous activity.

  • PDF

The Effect of Goomcheongsim-won(구미청심원) Extracts on E20 Corticells and P7 Cerebellar Cells Exposed to Hypoxia (구미청심원이 저산소증 유발 배양신경세포에 미치는 영향)

  • 한기선;정승현;신길조;문일수;이원철
    • The Journal of Korean Medicine
    • /
    • v.23 no.1
    • /
    • pp.120-132
    • /
    • 2002
  • Objectives : The purpose of this investigation was to evaluate the effect of Goomicheongsim-won Extracts on E20 corticells and P7 cerebellar cells exposed to hypoxia, and the effect on neuronal protection by elimination of Rhinoceros unicornis L. and/or Orpiment $As_2S_3$. Methods : P7 cerebellar cells were grown in various concentrations of KM-A, KM-B, KM- C and KM-D. On 7 DIV (day in vitro), cells were exposed to hypoxia (98% $N_2/5%{;}CO_2,{\;}3{\;}hr,{\;}37^{\circ}C$) and normoxia, and then further incubated for 3 days. Neuronal viabilities were expressed as percentages of control. E20 cortical cells were grown in various concentrations of KM-A, KM-B, KM-C, and KM-D. On 7 DIV, cells were exposed to hypoxia and normoxia, and then further incubated for 3 and 7 days. Results : I. The effect of KM-A on neuronal protection was significantly increased P7 cerebellar granule cells and E20 cortical cells on normoxia and hypoxia. 2. The effect of KM-B on neuronal protection was increased P7 cerebellar granule cells on normoxia, but was significantly decreased P7 cerebellar granule cells on hypoxia. The effect of KM-B on neuronal protection was non-significantly increased E20 cortical cells on normoxia and hypoxia. 3. The effect of KM-C on neuronal protection was non-significantly increased P7 cerebellar granule cells on normoxia and hypoxia and was decreased (p=0.058) on hyperconcentration of the extracts in normoxia. The effect of KM-C on neuronal protection was significantly increased P7 cerebellar granule cells and E20 cortical cells on normoxia and hypoxia (10 DIV), and the effect was E20 cortical cells on normoxia (14 DIV), non-significantly increased E20 cortical cells on hypoxia (14DIV). 4. The effect of KM-D on neuronal protection was increased P7 cerebellar granule cells on normoxia but was not on hyperconcentration of the extracts, was significantly decreased on hyperconcentration of the extracts in hypoxia. The effect of KM-D on neuronal protection was significantly increased E20 cortical cells on normoxia and was significantly increased E20 cortical cells increased on hypoxia (10 DIV). Conclusions : Goomicheongsim-won extracts had applicable effect on E20 corticells and P7 cerebellar cells exposed to hypoxia. The effect on neuronal protection by elimination of Rhinoceros unicornis L. and/or Orpiment $As_2S_3$ was changed.

  • PDF

The Effects of Lead Exposure on Glutamatergic Nervous System in Rat Cerebellar Cells

  • Yi, Eun-Young;Ma, Young;Choi, Woo-Joung;Lim, Dong-Koo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.211-211
    • /
    • 1996
  • Changes in glutamate release and uptake on cerebellar cells after the chronic exposure to lead were investigated. Rats were received 0.25% lead acetate in drinking water from the beginning of the pregnancy. The control group was given 0.125% sodium acetate in drinking water. The cerebellar cells from 7 or 8 day-old pups were cultured. Amino acid release from cerebellar granule cells and the glutamate uptake into cerebellar glial cells were measured using HPLC-ECD. Basal glutamate release and NMDA-induced glutamate release didn't show significant difference. However, the other amino acids in the granule cells obtained from lead exposed pups were less released than the control after the stimulation by NMDA (50$\mu$M). SNAP-induced (50$\mu$M) glutamate release was significantly reduced in granule cells prepared from lead exposed pups. The basal glutamate uptake in glial cells didn't show any difference. However, the uptake in glial cells prepared from lead exposed pups was significantly less blocked by PDC (24$\mu$M) compared to the control group. These results indicate that lead exposure to the mother might affect the Excitatory amino acid system during the development of the offspring.

  • PDF

Differential Effect of Homocysteic Acid and Cysteic Acid on Changes of Inositol Phosphates and $[Ca^{2+}]i$ in Rat Cerebellar Granule Cells

  • Kim, Won-Ki;Pae, Young-Sook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.1
    • /
    • pp.41-48
    • /
    • 1998
  • The present study was undertaken to characterize homocysteic acid (HCA)-and cysteic acid (CA)-mediated formation of inositol phosphates (InsP) in primary culture of rat cerebellar granule cells. HCA and CA stimulated InsP formation in a dose-dependent manner, which was prevented by the N-methyl-D-aspartate (NMDA) receptor antagonist D,L-2-amino-5-phosphopentanoic acid (APV). CA-, but not HCA-, mediated InsP formation was in part prevented by the metabotropic glutamate receptor antagonist ?${\alpha}$-methyl-4-carboxyphenylglycine ($({\pm})$-MCPG). Both HCA- and CA-mediated increases in intracellular calcium concentration were completely blocked by APV, but were not altered by $({\pm})$-MCPG. CA-mediated InsP formation was in part prevented by removal of endogenous glutamate. In contrast, the glutamate transport blocker L-aspartic acid-${\beta}$-hydroxamate synergistically increased CA responses. These data indicate that in cerebellar granule cells HCA mediates InsP formation wholly by activating NMDA receptor. In contrast, CA stimulates InsP formation by activating both NMDA receptor and metabotropic glutamate receptor, and in part by releasing endogenous glutamate into extracellular milieu.

  • PDF

Protective Effect of Fangchinoline on Cyanide-Induced Neuro-toxicity in Cultured Rat Cerebellar Granule Cells

  • Cho, Soon-Ok;Seong, Yeon-Hee
    • Archives of Pharmacal Research
    • /
    • v.25 no.3
    • /
    • pp.349-356
    • /
    • 2002
  • The present study was performed to examine the effect of fangchinoline, a bis- benzylisoquinoline alkaloid, which exhibits the characteristics of a $Ca^{2+}$ channel blocker, on cyanide-induced neurotoxicity using cultured rat cerebellar granule neurons. NaCN produced a concentration-dependent reduction of cell viability, which was blocked by MK-801, an N-methyl-D-aspartate (NMDA) receptor antagonist, verapamil, L-type$Ca^{2+}$channel blocker, and L-NAME, a nitric oxide synthase inhibitor. Pretreatment with fangchinoline over a concentration range of 0.1 to 10 $\mu$M significantly decreased the NaCN-induced neuronal cell death, glutamate release into medium, and elevation of $[Ca^{2+}]_i$ and oxidants generation. These results suggest that fangchinoline may mitigate the harmful effects of cyanide-induced neuronal cell death by interfering with $[Ca^{2+}]_i$influx, due to its function as a $Ca^{2+}$ channel blocker, and then by inhibiting glutamate release and oxidants generation.

Inhibitory Effect of Fangchinoline on Excitatory Amino Acids. Induced Neurotoxicity in Cultured Rat Cerebellar Granule Cells

  • Kim, Su-Don;Oh, Sei-Kwan;Kim, Hack-Seang;Seong, Yeon-Hee
    • Archives of Pharmacal Research
    • /
    • v.24 no.2
    • /
    • pp.164-170
    • /
    • 2001
  • Glutamate receptors-mediated excitoxicity is believed to play a role in the pathophysiology of neurodegenerative diseases. The present study was performed to evaluate the inhibitory effect of fanschinoline, a bis-benzylisoquinoline alkaloid, which has a characteristic as a $Ca^{2+}$channel blockers on excitatory amino acids (EAAS)-induced neurotoxicity in cultured rat cerebellar granule neuron. Fangchinoline (1 and 5$\mu\textrm{m}$) inhibited glutamate (1 ${m}M$), N-methyl-D-aspartate (NMDA; 1 ${m}M$) and kainate (100$\mu\textrm{m}$)-induced neuronal cell death which was measured by trypan blue exclusion test. Fangchinoline (1 and 5$\mu\textrm{m}$) inhibited glutamate release into medium induced by NMDA (1 ${m}M$) and kainate (100$\mu\textrm{m}$), which was measured by HPLC. And fangchinoline (5$\mu\textrm{m}$) inhibited glutamate (1 ${m}M$)-induced elevation of intracellular calcium concentration. These results suggest that inhibition of $Ca^{2+}$influx by fangchinoline may contribute to the beneficial effects on neurodegenerative effect of glutamate in pathophysiological conditions.

  • PDF

Neurotoxicity Assessment of Methamphetamine and Cadmium Using Cultured Neuronal Cells of Long-Evans Rats (신경세포 배양법을 이용한 methamphetamine과 cadmium의 신경독성 평가)

  • Cho, Dae-Hyun;Kim, Jun-Gyon;Jeong, Yong;Lee, Bong-Hun;Kim, Eun-Youb;Kim, Jeong-Goo;Cho, Tai-Soon;Kim, Jin-Suk;Moon, Hwa-Hwey
    • Toxicological Research
    • /
    • v.12 no.1
    • /
    • pp.69-79
    • /
    • 1996
  • Primary culture of cerebellar neuronal cells derived from 8-day old Long-Evans rats was used. Pure granule cells, astrocytes or mixed cells culture systems were prepared. These cells were differentiated and developed synaptic connections. And the astrocytes were identified by immunostaining with glial fibrillary acidic protein (GFAP). Methamphetamine (MAP), which acts on dopaminergic system and cadmium (Cd), a toxic heavy metal, were applied and biochemical assays and electrophysiological studies were performed. $LC_50$ values estimated by MTT assay of MAP and Cd were 3 mM and 2$\mu M$ respectively. Cells were treated with 1 mM or 2 mM MAP and 1$\mu M$ $CdCl_2$ for 48 hour, and the incubation media were analyzed for the content of released LDH. MAP (2 mM) and Cd significantly increased the LDH release. Cell viability was decreased in both groups and some cytopathological changes like cell swelling or vacuolization were seen. The cerebellar granule cells were used for measuring membrane currents using whole-cell clamp technique. Sodium and potassium currents were not affected by MAP neither Cd, but calcium current was significantly reduced by Cd but not affected by MAP. Therefore, in vitro neurotoxicity test system using neuronaI cells and astrocytes cultures were established and can be used in screening of potential neurotoxic chemicals.

  • PDF

Effects of Ginsenosides on the Glutamate Release and Intracellular Calcium Levels in Cultured Rat Cerabeller Neuronal Cells

  • Oh, Seikwan;Kim, Hack-Seang;Seong, Yeon-Hee
    • Archives of Pharmacal Research
    • /
    • v.18 no.5
    • /
    • pp.295-300
    • /
    • 1995
  • These studies were designed to examine the effects of ginsenosides on glutamate neurotansmission. In primary cultures of rat cerebellar granule cells, ginsenosides (Rb1, Rc did not Rg1, $500\mug/ml$) increased glutamate release which was measured by HPLC. but HPLC, but Re did not shwo an elevation of glutamate release. However, all of these ginsenosides down-regulated N-methyl-D-aspartate (NMDA)-induced glutamate release. Rc strongly increased glutamate release and elevated intracellular clcium concentrations $([Ca_{2+}]_i)$ which was measured by ratio fluorometry with FURA-2AM. These results indicate that ginsenosides have a homeostatic effect on glutamate neurotransmission, and there is a structure-function relationship among the ginsenosides tested.

  • PDF