• Title/Summary/Keyword: ceramic processing

Search Result 771, Processing Time 0.025 seconds

The property of inorganic insulation material depending on CSA contents and atmospheric steam curing condition

  • Kim, Tae-Yeon;Chu, Yong-Sik;Seo, Sung-Kwan;Yoon, Seog-Young
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.5
    • /
    • pp.407-412
    • /
    • 2018
  • In this study, we have made a cement based inorganic insulation material and added CSA (Hauyne Clinker) to reduce the demolding time and enhance the handling workability. CSA contents were varied by 0%, 1%, 3%, 5% and the atmospheric steam curing was tried for enhancing the compressive strength. As the CSA contents are increased to 5%, a rapid reaction of hydration caused the sinking of the slurry. So, the setting-retarder was added to control the reaction of hydration. By this, the sinking of the slurry was controlled but the height of the green body after expansions was a little bit lowered. In the CSA-added slurry, it was possible to demold within 24 hours and in case of CSA 5%-added, the sufficient workability was secured. Atmospheric steam curing (temperatures $-40{\sim}80^{\circ}C$, for 6~10 hrs.) was attempted to improve the compressive strength and found that an excellent strength of 0.25 MPa was achieved at $80^{\circ}C$ for 8 hrs. Specific gravity was about $0.12{\sim}0.13g/cm^3$ and heat conductivity was about 0.045 W/mK in all specimens. This strategy significantly improves the compressive strength of CSA 5%-added specimen up to 25% compared to without CSA added specimen.

The non-shrinkage grout to use ground fly ash as admixture

  • Kim, Yoo;Chu, Yong-Sik;Seo, Sung-Kwan;Kim, Jang-ho Jay
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.6
    • /
    • pp.509-513
    • /
    • 2018
  • This study uses fly ash for non-shrinkage grout in order to develop strength of grout and improve its durability. We grind fly ash to the extent of $7,000cm^2/g$ and use ground fly ash and raw fly ash respectively at the proportion of 10%, 20%, 30% instead of OPC and compare the results drawn on the condition of each proportion. As a mixed material of grout, EVA and water-reducing agent is added in order to prevent bleeding and improve segregation resistance, CSA is added with a view to preventing drying shrinkage and improving early strength property. In regard to flow and flow time test for analyzing and evaluating workability, it is revealed that grouts of all mix proportions except raw fly ash 30% mix proportion satisfy all performance criteria. With regard to length change rate, grout with no admixture shows the highest shrinkage rate, but the rate is 0.0005%, extremely insignificant rate. As material age increases, compressive strength of two grouts, that is to say ground fly ash 10% and 20%-used grouts, exceed that of grout with no admixture or show high-level compressive strength.

A Stochastic Model for Virtual Data Generation of Crack Patterns in the Ceramics Manufacturing Process

  • Park, Youngho;Hyun, Sangil;Hong, Youn-Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.6
    • /
    • pp.596-600
    • /
    • 2019
  • Artificial intelligence with a sufficient amount of realistic big data in certain applications has been demonstrated to play an important role in designing new materials or in manufacturing high-quality products. To reduce cracks in ceramic products using machine learning, it is desirable to utilize big data in recently developed data-driven optimization schemes. However, there is insufficient big data for ceramic processes. Therefore, we developed a numerical algorithm to make "virtual" manufacturing data sets using indirect methods such as computer simulations and image processing. In this study, a numerical algorithm based on the random walk was demonstrated to generate images of cracks by adjusting the conditions of the random walk process such as the number of steps, changes in direction, and the number of cracks.

Economical Estimation of SiC Ceramic Heater (SiC계 세라믹 발열체 경제성 평가)

  • Cho, Hyun-Seob;Ryu, In-Ho
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.05a
    • /
    • pp.450-453
    • /
    • 2009
  • Compositional design and optimization of processing parameters are key factors for controlling and improving the properties of SiC-based electroconductive ceramic composites. Compare economic estimation of SiC ceramic heater with sheathe heater are as followings. (1) Temperature rising time of sheath heater is 1.1 times faster than SiC ceramic heater. (2) Heating insulation of SiC ceramic heater is 2.7 times larger than sheath heater. If SiC ceramic heater is one body type of a product application, contact resistance will decrease. I think that temperature initial rising time is faster than now. The more SiC ceramic heater is used for a long time, the more economic benefit is larger in the view point of heat insulation.

  • PDF

Performance Evaluation of Water Vapour Adsorption & Desorption Properties of Ceramic Panel and Painting Materials for Humidity Control (습도조절용 세라믹패널 및 도료의 흡·방습성능 평가)

  • Jang, Kun-Young;Ryu, Dong-Woo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.3
    • /
    • pp.43-52
    • /
    • 2018
  • This study is conducted to evaluate the performance of ceramic panels and painting materials for humidity control which are developed in non-plastic room temperature hardening structure as part of a project to improve a residential environment for the low-income class, rather than the performance of high-priced humidity control materials that are produced with the existing plasticity processing. The testing methods included the measurements of absorption & desoprtion of humidity per material; Mock-up Testing; an evaluation method of comparing the absorption & desoprtion performances of Ecocarat, ceramic panels and painting materials through Living Lab. According to the measurements of absorption & desoprtion per material, ceramic panels, E panel, and ceramic painting material showed 73.3g/m2, 96.6g/m2, and 111.1g/m2, respectively. That is, the performance of humidity control of each material was found to be good in the order of: Ceramic Paint > E panel > Ceramic Panel. According to performance evaluation testing with Mock-up test and Living Lab, Ceramic Paint, Ecocarat, and Ceramic Panels showed better absorption & desoprtion performances in the order.

Effects of Fluorine Addition on Thermal Properties and Plasma Resistance of MgO-Al2O3-SiO2 Glass (MgO-Al2O3-SiO2계 유리 열물성 및 내플라즈마 특성에 대한 Fluorine 첨가의 영향)

  • Yoon, Ji Sob;Choi, Jae Ho;Jung, YoonSung;Min, Kyung Won;Kim, Hyeong-Jun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.119-126
    • /
    • 2022
  • MAS-based glass, which has been studied to replace the ceramic material used in the plasma etching chamber, has problems such as forming and processing due to its high melting temperature. To solve this problem, in this study, fluoride was added to the existing MAS-based glass to increase the workability in the glass manufacturing and to improve the chemical resistance to CF4/Ar/O2 plasma gas. Through RAMAN analysis, the structural change of the glass according to the addition of fluoride was observed. In addition, it was confirmed that high-temperature viscosity and thermal properties decreased as the fluoride content increased and plasma resistance was maintained, it showed an excellent etching rate of up to 11 times compared to quartz glass.

Effects of Ceramic Processing on the Microstructure and Electronic Properties of Low Loss Mn-Zn Ferrite (제조 공정이 Mn-Zn 페라이트의 미세구조와 전기적 특성에 미치는 영향)

  • 박형률;김진호
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.3
    • /
    • pp.289-295
    • /
    • 1997
  • Effect of ceramic processing was investigated on the microstructure and electronic properties of low loss Mn-Zn ferrite. Addition of CaO and SiO2 to calcined powder rather than to raw materials mixtured resulted in finer-grained microstructure. Higher oxygen pressure during sintering caused microstructural inhomogeneity and the increase in power loss and disaccommodation factor. Relatively low power loss was found for sintering up to 130$0^{\circ}C$ from powders calcined at high temperature and milled shortly. It was caused by slow densification rate and normal grain growth up to 130$0^{\circ}C$. Calcination at low temperature and prolonged milling enhanced den-sification, which gave a fine grained microstructure and low powder loss at sintering temperture below 120$0^{\circ}C$. Sintering temperature above 125$0^{\circ}C$, however, showed abnormal grain growth.

  • PDF

Fabrication of Undoped PbTiO3 Ceramics via Sol-Gel Processing (Sol-Gel Processing에 의한 순수 $PbTiO_3$ Ceramics 제조)

  • 김선욱;윤만순;임종인;김성숭;김남흥
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.3
    • /
    • pp.211-215
    • /
    • 1992
  • Crack free PbTiO3 ceramics were produced by sol-gel processing using alkoxide, which has not been reported to be successful. The PbTiO3 gels were prepared from Ti alkoxide and lead acetate without any dopants. They were calcined at $600^{\circ}C$ and miled to produce fine PbTiO3 powder. It was pressed into discs and they were sintered at 110$0^{\circ}C$ for a few hours. The sintered ceramics were relativley hard and dense as having about 96% of theoretical density of PbTiO3. Fabrication of pure PbTiO3 ceramics by sol-gel processing is possibly due to their small grain size and uniform distribution of residual stress created during cubic-tetragonal transition over large number of small grains in fine grain PbTiO3 ceramics.

  • PDF

Development of Green-Sheet Measurement Algorithm by Image Processing Technique (영상처리기법을 이용한 그린시트 측정알고리즘 개발)

  • Pyo, C.R.;Yang, S.M.;Kang, S.H.;Yoon, S.M.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.313-316
    • /
    • 2007
  • The purpose of this paper is the development of measurement algorithm for green-sheet based on the digital image processing technique. The Low Temperature Co-fired Ceramic(LTCC) technology can be employed to produce multilayer circuits with the help of single tapes, which are used to apply conductive, dielectric and/or resistive pastes on. These single green-sheets must be laminated together and fired at the same time. Main function of the green-sheet film measurement algorithm is to measure the position and size of the punching hole in each single layer. The line scan camera coupled with motorized X-Y stage is used. In order to measure the entire film area using several scanning steps, an overlapping method is used.